
CSE 260 PA2 Report

Mohit Shah(A59005444)

Monil Shah (A59012111)

Github repo link : Code

Introduction

This report is a brief documentation and analysis of the steps we did in improving matrix

multiplication performance on GPU boards namely K80 and T4. The report is organized to document

the procedure of optimizing the kernel from naïve and instruction level parallelism all the way to

implementing CUTLASS inspired cross product

Development Flow

1.a How program works

The main logic of this assignment is within the GPU kernel that implements matrix multiplication

between matrix A and B and stores it in matrix C. CPU takes care of transferring the required

array of matrices and the GPU kernel code that can run-on the GPU. CPU later copies back this

result C and compares it with the reference result. There are three versions of implementation

● Naïve – Multiply a single row of A with a single row of B and store in the corresponding

location of C. This works for all sizes of N

o Example Pseudocode

▪ For(i=0; i<N; i++)

For(j=0; j<N; j++)

For(k=0; k<N; k++)

C[i][j] = A[i][k] * B [k][j]

● ILP – In this method, we break the bigger matrix into smaller matrices of dimension

BLOCKTILE_M x BLOCKTILE_N. For our case this becomes 32x32. Each thread block

(16x8) is responsible for computation on this tile. Each thread loads Tile[Tid_y +

k*stride][Tid_x+0] and Tile[Tid_y + k*stride][Tid_x+16] location elements of the

tile from 4 different rows in strided form (stride=8). The matrix tiles are brought in shared

memory, then few elements of C are computed and written into matrix C. Shared memory

is padded with 0 for the tile which is not a multiple of the blockTile dimension.

o Example pseudocode

▪ For(k=0; k < BLOCKTILE/BLOCKDIM_Y; k++)

As[SHM_Y][SHM_X] = (GMEM_Y < N && GMEM_X < N) ?

A[GMEM_Y][GMEM_X] : 0

As[SHM_Y][SHM_X+16] = (GMEM_Y < N && GMEM_X+16 < N) ?

A[GMEM_Y][GMEM_X+16] : 0

//Load B similar to A

For(k=0;k<BLOCKTILE;k++)

For(j=0; j<BLOCKTILE/BLOCKDIM_Y; ++)

Cr[J][0] = As[Tidx+0][k] * Bs[k][Tidy +j];

Cr[J][1] = As[Tidx+16][k] * Bs[k][Tidy +j];

https://github.com/cse260-sp22/hw2-pa2-m1shah-m3shah

For(k=0; k< BLOCKTILE/BLOCKDIM_Y; k++)

C[GMEMY+Tidy+k*BLOCKDIM_Y][GMEM_X+Tidx+0] = Cr[k][0];

C[GMEMY+Tidy+k*BLOCKDIM_Y][GMEM_X+Tidx+16] = Cr[k][1];

● CUTLASS inspired Outer Product

o In this method we break bigger matrices into smaller rectangular matrices. These

tiles are loaded into Shared Memory. Within these smaller matrices, we create

smaller sub-tiles which will generate the outer product. Working sets of A and B are

first brought from Global Memory into Shared Memory. A subset of values are then

brought into registers from the shared memory,then the outer product is computed

on registers and finally stored back into the matrix.

▪ Example Pseudocode

● Load Tile A and B into Shared Memory from Global Memory

● Take a fragment from shared memory into registers

● Compute Outer product using these registers

● Store the computed values to C matrix in Global Memory

1.b Development Process

● First Step was to implement a working tiled matrix multiplication

o For this we first tried to visualize what is the required Tile size, how much shared

memory we need, how many threads we need to compute a tile

o Next, we figured what should be the global memory address to load the tiles into shared

memory and computed the inner product by loading values from shared memory

o Once the kernel worked for powers of 2, we worked on how to handle the fringe case

where matrix size was not divisible by tile size and pad shared memory with zeros for

out of bound access.

o After having the code work for all sizes of N, we started optimization steps

● Second step was to optimize the configuration and kernel to achieve better

performance

o For this we started with doing more work per thread. We tried both types of

configurations of multiple block loading per thread.

▪ We implemented interleaving with a stride of 16 and contiguous access to

adjacent elements (i.e., 2*tidx and 2*tidx+1) in X-dimension

● Interleaving gave better results, so we proceeded with that

o Next, we implemented more work per thread, by reducing the Y dimension threads.

Since assignment works on double precision, we wanted 128 Bytes of access per warp.

And then implemented 4 reads of rows per threadIdY (i.e., 4*tidy+[0,1,2,3])

o Next, we played around with tile size and still found 32x32 to be the most optimal for

our case.

● Third Step was to implement CUTLASS inspired code

o We went through the documentation of CUTLASS and used that idea to implement 2-D

tiling and making use of registers which are faster to access than shared memory and

can also be reused by threads.

o Started with a square shared memory size of 32*32 for both A and B which comes to a

total share memory usage of 16KB which is much lower than the total available shared

memory of 48kB per block.

o So we tried with 64*64 tiles of A and B but that led to over utilization of shared memory

and limited the number of thread blocks that can be active in an SM at one time.

o Then we tried out a tile size of 96*32 for A and 32*64 for B which brings the shared

memory utilization to 40KB which led to a shared memory efficiency of 93% as

indicated by the profiler.

o Calculated the addressing scheme such that threads in a warp send a coalesced global

memory access and load data into shared memory from global memory.

o Implemented the cross-product by first loading A and B’s elements into registers from

shared memory. So we experimented with different thread block sizes starting with 8*8

for the same tile size mentioned above. Due to a small number of threads calculating a

large tile size, each thread had to load a large number of values of A and B from global to

shared memory and then from shared memory to register, which also caused bank

conflicts in shared memory and register spillage at thread level. Then we also tried a

thread block dimension of 16*16 leading to optimal performance from high thread

occupancy and efficient register usage. Now each thread was calculating 24 (6 * 4)

elements of C which were then transferred to global memory.

● Fourth step was to port code from K80 to T4

o We first made sure that code worked for K80.

o Then we setup T4 instance and checked Naïve implementation

o Next, we ported Interleaving ILP code, and modified the thread block configuration as

well as kernel from 16 to 32 in X dimension. We checked the performance here.

o Next, we ported the CUTLASS inspired code which calculated the outer product,

modified the thread block and block tile configurations for the most optimal

performance.

1.c What worked well and what didn’t

● Initially we spent a lot of time thinking about how the kernel can work for non-powers

of 2. And after a lot of time, we realized that the condition to check is almost already

present in the access itself. Implementing tiled multiplication with 32x32 tile and 32x32

thread block was quite easy.

● We later faced a tough time implementing optimized out-of-bounds checks for

interleaving ILP based kernel. We thought this would lead to too much thread

divergence and would hurt performance, however, we could not get around a better

solution to avoid those branch conditions.

● We realized later that we will need to implement a CUTLASS type cross product to get

extra credits. We already learned that we first need to understand the accesses and then

start coding. Hence, we first thoroughly read the logic , came up with an access pattern

and then coded it

o Debugging this was again challenging since it was using a cross product. So first

we tried to rule out any issues with accesses by using dot product style, and then

used cross product.

Result

2.a Performance for different thread block configurations

Size Thread

Block

Tile Perf

(GF)

Thread

Block

TIle Perf

(GF)

Thread

block

Tile Perf

(GF

)

256 BY = 8

BX = 8

Bm = 96 ,

Bn = 64,

Bk = 16

111.9 BY = 16

BX = 16

Bm = 96 ,

Bn = 64,

Bk = 32

383 BY = 32

BX = 32

Bm = 96 ,

Bn = 64,

Bk = 32

372

512 BY = 8

BX = 8

Bm = 96 ,

Bn = 64,

Bk = 16

327.3 BY = 16

BX = 16

Bm = 96 ,

Bn = 64,

Bk = 32

551 BY = 32

BX = 32

Bm = 96 ,

Bn = 64,

Bk = 32

417

1024 BY = 8

BX = 8

Bm = 96 ,

Bn = 64,

Bk = 16

485.9 BY = 16

BX = 16

Bm = 96 ,

Bn = 64,

Bk = 32

623 BY = 32

BX = 32

Bm = 96 ,

Bn = 64,

Bk = 32

481

2048 BY = 8

BX = 8

Bm = 96 ,

Bn = 64,

Bk = 16

513.8 BY = 16

BX = 16

Bm = 96 ,

Bn = 64,

Bk = 32

629 BY = 32

BX = 32

Bm = 96 ,

Bn = 64,

Bk = 32

487

2.b Explain why some geometry is higher performance than others

The main idea behind parallelism is to have multiple independent computations to hide

latency. With smaller tile dimensions like 8x8 we need more global accesses for the same

amount of computation as accesses of 128 Bytes are from 2 different thread blocks now, which

can not be coalesced. If thread block size is too small, we might end up reaching a limit on

how many thread blocks can be mapped on a single SM. This is where our parameter

sweeping helps. To find the optimal size that gives the most performance by hiding latencies

arising due to stalls as well has more global access.

The other constraint is the usage of big thread blocks. Kepler has 13SMs and each SM can

have a maximum of 2048 threads, which limits the number of blocks that can be scheduled on

all SMs. For a 1024x1024 we need ~160 thread blocks which can not be mapped on all SMs on

a single hand, thereby incurring latency. Thus a 16x16 thread block size is the most optimal as

it has maximum GPU occupancy.

2.c Peak GF for configuration in 2.b

Size Perf Thread block size Block Tile

256 383 16x16 Bm = 96 , Bn = 64, Bk = 32

512 551 16x16 Bm = 96 , Bn = 64, Bk = 32

1024 623 16x16 Bm = 96 , Bn = 64, Bk = 32

2048 629 16x16 Bm = 96 , Bn = 64, Bk = 32

Quantitative analysis

3.a With respect to Naïve

Perf comparison

Size Naive Perf

GFLOPs

Reps Thread block

size

Our code

Perf

GFLOPs

Reps Thread

block

size

256 95.54 1300 (4.6s) 16x16 389 5000(4.3s) 16x16

512 97.25 175(4.83s) 16x16 572 1000(4.6s) 16x16

1024 96.34 20 (4.45s) 16x16 634 140(4.73s) 16x16

2048 99.41 2(3.45s) 16x16 637 15(4.04s) 16x16

As can be seen from performance numbers, Naive performance almost flattens over large

sizes. Whereas, the performance for our code increases to 1024 and then starts to flatten.

Profiled Runs

Size Type Req GLD

throughput

(GBPs)

Req GST

throughput

(GBPs)

SM

Efficien

cy

Stall Reason

(Execution

Dep)

Sync

Stall

Fetch

Stall

Stall

Reason

(mem

Dep)

256 Our ~27 ~3.8 ~85% ~26% ~2.5% ~17% ~0%

Naive ~48 ~0.3 ~82% ~50% 0% ~8% ~2.56%

512 Our ~41 ~2.9 ~93% ~17% ~3.8% ~5.8% ~0%

Naive ~121 ~0.4 ~90% ~29% 0% ~4.3% ~3.8%

1024 Our ~46 ~1.7 ~97% ~17% ~3.4% ~4.6% ~0%

Naive ~130 ~0.2 ~93% ~15% ~0 ~4.6% ~3.7%

From the above table, it can be seen that the throughput requested by the Naive

implementation increases a lot in comparison to our code, showing reuse opportunities in our

code and thus less latency for our code. Due to use of shared memory the stall due to

syncthreads is present in our code but not naive; however this is offset by the memory

dependency stall on naive code. The SM efficiency that is achieved by our code is higher than

naive implementation that gives us the performance boost.

Analysis

4.a Plot graph for different N

4.b Explain with respect to BLAS

Comparison between BLAS and our code shows the following things.

● BLAS starts with very low performance for sizes 511 and lower, whereas our

implementation gives higher performance at lower sizes.

● Our code has lots of dips near powers of 2, whereas BLAS has similar or very low

difference among its neighbor sizes

● The dips in performance between one higher size than power of 2 is more in our code

but not so much visible in BLAS

● Our code seems to saturate around 768 and above sizes that are close to power of 2, but

BLAS doesn’t saturate so much yet.

4.c Identify irregularities, dips, peaks from 4.a

It is visible from the figure that our code has performance dips for size which is one greater

than the nearest power of two. This is attributed to the fact that we rely on BLOCKTILEs

which are 96x64 for us. So a single element still requires computation from the whole tile

even though it is padded with 0s. As we slowly go towards the power of 2, the performance

increases.

It is also visible that performance is saturating over sizes 1024 and above. This is possible due

to the fact that at higher sizes we do not have sufficient occupancy due to hardware resource

limitation that can help with throughput . This is in contrast with BLAS which does not

saturate at higher matrices, showing there is still scope of reuse of matrices among cache

hierarchy

4.d Show Table

Matrix

Size

BLAS Perf CuBLAS CUTLASS

Perf GFLOPs

Reps

32 3.84 25000(4.26s)

33 2.83 19000(4.82s)

63 17.93 15000(4.18s)

64 20.19 17000(4.41s)

65 15.84 12000(4.16s)

127 87.41 10000(4.68s)

128 94.99 10000(4.41s)

129 82.55 8000(4.16s)

255 364 5000(4.55)

256 5.84 472.5 383 5000(4.36s)

257 (Interpolated in graph) (Interpolated in graph) 237 3000(4.29s)

511 (Interpolated in graph) (Interpolated in graph) 515 900(4.65s)

512 17.4 756.5 551 1000(4.87s)

768 45.3 1002.7 608 300(4.46s)

1023 73.7 1063.7 586 120(4.38s)

1024 73.6 1045.4 623 120(4.13s)

1025 73.5 1014.2 530 120(4.86s)

2047 171 984.2 586 15(4.38s)

2048 182 1021.6 629 15(4.09s)

2049 175 937.8 569 15(4.52s)

4.e Plot in comparison with OpenBLAS and CuBLAS

Calculation

5.a Roofline model plot

The thread block size for our best performance is 16X16. Each thread block calculates a C tile

of size 96 X 64. So the total number of operations (multiply and add) for C would be = 1024 *

2.

Total amount of Global memory accessed = (96*1024 + 64*1024) * (8 bytes)

FLOPS = 2 * 1024 * 96 * 64. Therefore Q (Flops / Mop) = FLOPS/ Total Mem = 9.6

At Base Freq = 562MHz, Perf = 13 SM * 64 DP * 2 Ops * 562 = 934 GF/sec

At Boost Freq = 875 MHz, Perf = 13 SM * 64 DP * 2 Ops * 875 = 1.45 TF/sec

We are getting a Frequency of 823.5 MHz when running simulations.

At Our Freq = 823.5 MHz, Perf = 13 SM * 64 DP * 2 Ops * 823.5 = 1.37 TF/sec

At the given BW of 240 GB/s, peak performance for our Q is = BW * Q = 240 * 9.6 = 2.3 TF/s

This value is greater than the peak performance achievable at the base, boost and average

observed frequency, so we should be able to reach the max performance of 1.37 TF/sec at

823.5 MHz.

5.b Estimate Q

Peak performance at new BW = BW * q = 154 * 9.6 = 1.47 TF/sec. So a Q of 76.8

FLOPS/double word that we already have can help achieve peak performance at new BW.

Calculating minimum Q value required for peak performance at given BW for different

frequencies:

At 562 MHz, Qmin = 934 / 154 = 6.07 FLOPS/byte = 48.51 FLOPS/double word

At 823.5 MHz, Qmin = 1.37TF/ 154 = 8.89 FLOPS/byte = 71.11 FLOPS/double word

At 875 MHz, Qmin = 1.45 / 154 = 9. 41 FLOPS/byte = 75.32 FLOPS/double word

Q is already more than the minimum required Q so no need to change for new bandwidth.

Future Work

● Try different block dimensions, block tiles for CUTLASS because we didn’t get enough

time to optimize kernels. We got a good performance that will get us some extra credits

is where we started writing our report.

● Try with rectangular thread block dimensions and tile sizes.

● Try Shuffle operation in interleaving case. It was brought to our attention that shuffle

instruction helps in interleaving cases but we weren’t very sure on how to use it.

T4 extra credit

7.a Explain implementation

● We first setup the instance on AWS for T4 using AMI cse260-sp22-hw2 keypair name

i-0a4bec6f282a8eac2 (pa2-m3shah)

● Next, we tried a naive implementation using single point precision and noted

performance.

● Next, we ported the interleaving access code to T4. Here we had to change the code a

little since we wanted 32 SP accesses by a warp. So our Block dimension became 32*4.

The performance wasn’t crossing 2TFLOPs for sizes 2048 and above

● Next, we ported the CUTLASS code and got good results. In some cases it gave more

than 3TFLOPs as well.

7.b Show results

N Peak TFLOPs Reps Thread block size

256 0.71 10000 (~5s) 32 x 16

512 2.53 4000 (~5s) 32 x 16

1024 3.194 700 (~5s) 32 x 16

2048 3.62 100 (~5s) 32 x 16

References

1. CUTLASS blog : https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/

2. K80 Spec : https://www.techpowerup.com/gpu-specs/tesla-k80.c2616

3. T4 specs :

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tenso

r-core-datasheet-951643.pdf

4. CUDA Programming guide :

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

5. Volkov talk sides:

https://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf

https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://www.techpowerup.com/gpu-specs/tesla-k80.c2616
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf

