
CoFee : Contention-Free Snooping Cache Coherence
protocols for Multicore Systems

Gandhar Deshpande, Monil Shah

ABSTRACT
This report summarizes the work done to create a cache co-

herence simulator supporting 4 different bus snooping based
protocols using a single level cache and main memory. The
idea is to gain insights into bus contention, scalability of co-
herence protocol and advantage of one protocol over other.
We talk about the various protocols available and supported
in our simulator. We present our code development method-
ology and protocols implementation. We also speak of the
possible limitations of our implementation and future works.
We also propose our own cache coherence protocol that builds
upon MOESI to reduce bus contention

1 Introduction
Memory is one of the fundamental components of any

processor. Over time, as Dennard scaling and Moore’s Law
pushed the processors to be smaller and faster, the mem-
ory did not scale in the same manner leading to the famous
"Memory Wall". To mitigate the performance degradation
due to this gap, computer architects have used various meth-
ods. Largely these work around the cache memory, which
allows fast access to memory for the processors. As scaling
failed, architects have moved from single processor machines
to multiprocessor machines which have shared memory.

As memory hierarchy becomes shared across multiple
cores, we start getting a new problem of memory consistency
and coherence. The data written by one processor and read by
another processor should be the same, it should not be stale.
To implement this condition, architects came up with various
coherence protocols. Some of the most famously used coher-
ence protocols are Modified-Shared-Invalid (MSI),Modified-
Shared-Exclusive-Invalid (MESI), Modified-Shared-Owned-
Invalid (MOSI) and Modified-Shared-Exclusive-Owned-Invalid
(MOESI). To explore these concepts in depth, we imple-
mented a cache coherence simulator which will run a given
trace, collect the stats and show the results of the simulation.
In this report, we talk about our implementation of a cache
coherence simulator.

The report is arranged as follows:

• Section 2 talks about the background work related to
the different coherence protocols and their working

• Section 3 expounds on the simulator implementation
and development process.

• Section 4 discusses the evaluation methodology

Figure 1: Memory Wall

• Section 5 provides a conclusion to the project.

• Section 6 provides our code for reference.

• Section 7 shows future works for improvements.

2 Background Work
In this section, we talk about the different coherence pro-

tocols. We start by talking about the concept of cache coher-
ence, and then we look briefly at some of the examples of
coherence protocols.

2.1 Cache Coherence
A coherent cache is a cache which has the information re-
garding its own memory and strives to use the latest available
value instead of using stale values [1]. To explain the concept
of coherence, lets take a look at what a incoherent system
would look like, to understand why coherence is of paramount
importance. Imagine 2 cores working on the same value in
memory A. Since both the processors are using this data,
both processors would have this value cached in their caches.
As long as both of them are just reading the data and not
modifying data, we do not see any problem. But since both
are using the same values, if one of the processor modifies
this value, the second processor’s cache copy immediately
becomes stale. In this scenario, the second processor needs
to be informed that the value of this variable A has been
modified and it should use this new value.

This example perfectly shows how important coherence is
in a multicore system. If the variable is not updated in the

1

second core, the processor would produce incorrect results.
To overcome this, there are multiple possible protocols. Some
of the more famous ones are Valid-Invalid, MSI, MESI, MOSI
and MOESI. These coherence protocols each have different
features which make them desirable in different use-cases.
We will talk about each of them in brief below.

2.2 Bus Snooping
Bus snooping is a mechanism where a cache controller mon-
itors transactions on the shared bus and update its cache
coherence metadata if required. Based on the bus activity it
decides to send data to requester or invalidate its cache block.
This is a very simplistic and cost effective cache coherence
protocol and doesn’t require sophisticated implementation.
For less than 8 core system, bus snooping protocols work
decently well but face bus contention problems when scaled
to large number of cores. That gives rise to directory based
protocols.

2.3 Valid-Invalid Protocol
The Valid-Invalid protocol is one of the very simplistic proto-
cols used for coherence. As the name says, it has only 2 states
- valid and invalid. At a time only one cache block can be
in valid state. If one of the processors modifies/requests this
data, it will send a signal to the other processor telling it to
invalidate its cached copy of the data. With this the protocol
requirement is completed. The second processor will now
request the data from the the main memory again and use
the new updated copy of the data. Since this is case, the first
processor must write back the data to the main memory every
time it writes to the cache.

2.4 MSI Protocol
MSI protocol has three different possible states - Modified,
Shared and Invalid. This protocol was built to improve over
the V-I protocol. The V-I protocol does not allow data to
be shared between more than one processors. However, as
the number of processors increases, this becomes unwieldy,
since a significant chunk of the memory bandwidth is now
consumed in just writing back to the memory. MSI allows
for this modification. When a processor writes to the cache,
it still must send an invalidation request to all the processors.
However, the data can be kept in the cache in a modified
cache until other core requires ownership. It needs to be only
written back when another processor requests the same data
in a shared state, at which point the data gets written back
and the line is invalidated. This improves the performance by
reducing the traffic writing back to the main memory. This
protocol is good when data is mostly used in read only mode.

2.5 MESI Protocol
MESI protocol extends the MSI protocol by adding another
state called Exclusive. This state optimizes a common case
where a processor receives access to read a particular cache
and wishes to modify it immediately after like Read-Modify-
Write. In MSI protocol, the processor needs to essentially
obtain a write permission by broadcasting on the bus that it
wishes to move into the Modified stage. If the cache line is
not available in any other processor, the processor gets the
data in an Exclusive state when it requests the data, instead

Figure 2: MSI working state machine

Figure 3: MESI working state machine

Figure 4: MOSI working state machine

2

of Shared state. This enables the processor to change the
state of the cacheline from Exclusive to Modified silently.
This reduces the traffic on the bus significantly, as this use-
case is very common even in single-threaded applications.
The second benefit is for the data to be returned by the core
containing block in exclusive state to the core requesting data
instead of being serviced by LLC.

2.6 MOSI Protocol
MOSI protocol extends the MSI protocol in a different way.
It adds a different state called Owned. The motivation behind
this state is that when a processor holds a particular cache
line in a Modified or a Exclusive state, and another processor
requests this line, the processor needs to change its state and
send the data to the requestor and the main memory controller.
The main memory controller is technically the owner of the
data. To avoid this, the cacheline is provided to the processor
with ownership. In such a case, the processor is responsible
for providing the data to any requesting processors in a read
mode and still retain the ownership of the block. If any other
processor writes to their copy of the data, the current owner
must relinquish its ownership. The rquesting core is now
required to update main memory with correct data if it gets
evicted.

2.7 MOESI Protocol
MOESI protocol is a mix of MESI and MOSI protocol, giving
it the best of both worlds. By adding exclusive state, the cache
block can move from E to M silently without generating any
bus requests. Adding O state allows the cache to remain
the owner of the block and broadcast to sharers, reducing
multiple requests to the main memory controller.

2.8 CoFee Protocol
CoFee protocol is a protocol we propose as an augmentation
of the existing protocol to optimize a common use-case. The
main drawback with exclusive state is that while it allows
E -> M silent upgrade, in case data is required to be shared
across more than 3 cores it needs to come from LLC. The
problem with owned state is it requires the data to be modi-
fied by a process before some other process tries to ask the
read only copy of it. This is where our protocol helps. It
extends the exclusive state by modifying it to C state. C state
is the exclusive ownership state where the data can remain
in the first requesting core’s cache block, share it with other
cores before writing into it and then move to modified state
by invalidating other’s. The motivation behind this new state
is, it allows shared copy to be supplied by a private L1 cache
instead of main memory or the LLC, thereby keeping LLC
busy with other important demand requests. This will reduce
the traffic of requests to the LLC and allow for faster sharing
of data across caches. This is especially useful as we paral-
lelize code over multiple cores that access shared libraries in
their application.

3 Development Flow
For our code development, we started out with a starter

code which had an associative cache implementation and a
structure to configure the cache using command-line options.
The cache implementation was a simple class that had basic

Figure 5: CoFee working state machine

functions to access the cache, and work on a hit or a miss.
This code was not built with anything related to coherence.

To design this bus actions and responses, we first analyzed
each protocol. We wanted our simulator to be compatible
with most of the coherence protocols used widely in industry.
Our simulator supports MSI, MESI, MOSI and MOESI pro-
tocols. We started our development process by first looking
at what sort of communication is required between the cores.
Once we found that, we looked at the various possible states
that each processor could go in. We created a table of the
various possibilities and made sure that our code covers each
of the possible states in the processor.

Once we had conceptualized the various states in which
the processor can go and eliminated the states which are not
possible, we decided to implement it like a state machine. We
used a Bus-based snooping protocol in our simulator, making
it configurable to run with any supported coherence protocol.
We will now take a deep-dive into the nitty-gritty details of
our implementation.

/ / Cache r e q _ c a c h e . . cache_n
r e q _ c a c h e : : Access () ;
BusAct ion = r e q _ c a c h e : : Response () ;
i f (cache != r e q _ c a c h e) {

t h i s : : ReadBus () ;
BusReac t i on = t h i s : : BusReac t i on () ;

}
r e q _ c a c h e : : C h a n g e _ S t a t e (BusReac t i on) ;
r e q _ c a c h e : : u p d a t e S t a t s () ;

Listing 1: Workflow of the code

r e q _ c a c h e : : Access () ;
{

i f (H i t) {
s e t F l a g s ;
r e t u r n h i t B u s A c t i o n ;

}
e l s e {

f i l l L i n e ;
r e t u r n missBusAc t ion ;

}
}

Listing 2: Access Functions

3

cache [1 . . n] : : BusReac t i on () ;
{

c a s e < S t a t e > : CacheAct ion () ;
BusResponse () ;

}
Listing 3: BusReaction Function

On every cache access, the initial code was just accessing
the cache, checking if the line was present. If so, it would
return the hit. If not, it would replace the oldest line based on
LRU and add the cache line into the cache. The cache line
simulation is done with just tags and no data. We modified
this access function so that the function returns a bus action.
In the main function of the code, we read the trace file and
run the access based on the trace file. Once the processor has
performed the access function, the processor decides on a bus
action based on the protocol. If the access is a write to the
cache, it will send an action on the bus which will say that
the processor is modifying the cache line with the address.
This bus action is read by all the other processors and based
on this they will take some action and writeback a response
on the bus. Based on this response, the requestor processor
will then finish the transaction.

4 Evaluation
For evaluating our code, we used 2 traces present with the

starter code to understand that our implementation matches
with what is expected. This gave us a proof of concept of
our implementation to try further experiments. We imple-
mented the code and tested it by making it run for 4 cores.
We recorded a variety of statistics from the code. We also
created a couple of microbenchmarks as a sanity test. These
benchmarks test the functionality of our code by checking if
the processor is indeed accessing the data, receiving it from
the core it is supposed to receive it from. It also checks the
basics of whether a hit/miss is being recorded.

The statistics that are of interest to us to understand bus
contention are : INV (invalidations), WB (writeBacks to
Memory), C2C (transfer from other Cache), getM message,
SU (Silent Upgrade). Benchmark 1 : Read one cache block
in all four caches. Write cache block in each cache one after
another. Benchmark 2 : Write in one cache block followed
by read in next 3 cache blocks. Benchmark 3 : Read in one
cache block, followed by reads by other cores to the same
cache block.

The above benchmarks are very limited in terms of the
number of operations it performs, but they are sufficient in
number to identify the importance , advantages, disadvan-
tages of one protocol over another.

4.1 4 core Analysis
As can be seen from the table 1 the main advantage is in
terms of Cache to Cache transfers by adding specific states.
From 2 it can be seen that invalidations decrease on R/W
and from 3 silent upgrades can be seen. The number of
invalidations changes across the protocols with MSI taking
highest number of invalidations. The number of Writebacks
decrease by addition of Exclusive / Owned States depending
on the type of workload. There are also some silent upgrades

Table 1: Benchmark 1 4-Core

MSI MESI MOSI MOESI COFEE Type
6 6 6 6 6 INV
0 0 0 0 0 WB
3 4 3 4 6 C2C
4 3 4 3 3 GETM
0 1 0 1 1 SU

Table 2: Benchmark 2 4-core

MSI MESI MOSI MOESI COFEE Type
17 13 9 13 9 INV
4 4 0 0 0 WB
4 13 13 13 13 C2C
4 4 4 4 4 GETM
0 0 0 0 0 SU

which reduce the traffic at LLC as can be seen by less number
of getM messages which are favourable for workloads that do
read modify write by the reduction in getM messages seen.

4.2 8 core Analysis
The behavior of protocol changes a lot for 8 core system. As
can be seen from the table above, the number of invalidations
increases by a big margin across the protocols. As can be
seen from the table 4 the main advantage is in terms of
Cache to Cache transfers by adding specific states. From 5
it can be seen that invalidations decrease on R/W and from
6 silent upgrades can be seen. The number of invalidations
changes across the protocols with MSI taking highest number
of invalidations. The number of Writebacks decrease by
addition of Exclusive / Owned States depending on the type
of workload. There are also some silent upgrades which
reduce the traffic at LLC as can be seen by less number of
getM messages which are favourable for workloads that do
read modify write by the reduction in getM messages seen.

4.3 Cofee Protocol Analysis
As can be seen from the table 1, 2, 3, 4, 5 6 the main advan-
tage is in terms of Cache to Cache transfers by adding specific
states which proves our efficacy in reducing bus traffic from
LLC and main memory. The other advantage that Cofee sees
is in terms of silent upgrades which is also a property of
MESI and MOESI.

Table 3: Benchmark 3 4-core

MSI MESI MOSI MOESI COFEE Type
6 6 6 6 6 INV
0 0 0 0 0 WB
3 5 3 4 9 C2C
4 3 4 3 3 GETM
0 1 0 1 1 SU

4

Table 4: Benchmark 1 8-Core

MSI MESI MOSI MOESI COFEE Type
14 14 14 14 14 INV
0 0 0 0 0 WB
7 8 7 8 14 C2C
8 8 8 8 7 GETM
0 0 0 0 1 SU

Table 5: Benchmark 2 8-Core

MSI MESI MOSI MOESI COFEE Type
49 57 49 49 49 INV
8 8 0 0 0 WB
8 8 57 57 57 C2C
8 8 8 8 8 GETM
0 0 0 0 0 SU

5 Conclusion
Through this project we learned about the various intri-

cacies involved with implementing a cache coherence. We
looked at various details to understand how the cache inter-
acts with other caches as well as how implementation varies
with snooping and buses. We learned enough details that
we started wondering about a condition and proposed a new
flow of data to allow for a greater efficiency. Our simulator
currently supports MSI, MESI, MOSI, MOESI and COFEE
protocols with a single level of cache.

6 Future Works
Our simulator currently implements only single level cache

without TLBs. The next extension to our work would be to im-
plement directory based protocol and see how bus contention
improves when the cores are scaled to higher numbers. Im-
plementing multi level cache is another task since it involves
invalidating L2 and higher caches based on physical address
whereas L1 caches will be invalidated on Virtual address
thereby requiring TLBs as well.

7 Code
Source code for our simulator is available at https://

github.com/gdpande97/cache-coherence-simulator.
git

8 Contributions
This project was done by both Monil and Gandhar in equal

terms of contribution. Gandhar wrote the baseline code for
development with the MSI protocol. Monil augmented the

Table 6: Benchmark 3 8-Core

MSI MESI MOSI MOESI COFEE Type
14 14 14 14 14 INV
0 0 0 0 0 WB
7 9 7 8 21 C2C
8 8 8 8 7 GETM
0 0 0 0 1 SU

code with the MESI, MOSI and MOESI protocols. Both of us
worked together to design and conceptualize the working of
our simulator and understood the way the different protocols
work. Both of us also worked through and debugged the idea
of a new state in the coherence protocol- CoFee, which would
allow sharing of read-only data through the cache. Monil
worked to add the microbenchmarks and Gandhar worked for
data collection. Both of us contributed equally to the report.

9 Acknowledgement
We would like to thank Dr Jishen Zhao, Associate pro-

fessor, University of California San Diego to give us this
opportunity to implement a cache coherence simulator for
CSE 240B final project for Spring 2022. We would also like
to thank TA Vaibhav Tiwari for his continued support. We
would also like to thank NCSU for making their cache starter
code public.

10 References

[1] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory
Consistency and Cache Coherence. Morgan amp; Claypool Publishers,
1st ed., 2011.

5

https://github.com/gdpande97/cache-coherence-simulator.git
https://github.com/gdpande97/cache-coherence-simulator.git
https://github.com/gdpande97/cache-coherence-simulator.git

	Introduction
	Background Work
	Cache Coherence
	Bus Snooping
	Valid-Invalid Protocol
	MSI Protocol
	MESI Protocol
	MOSI Protocol
	MOESI Protocol
	CoFee Protocol

	Development Flow
	Evaluation
	4 core Analysis
	8 core Analysis
	Cofee Protocol Analysis

	Conclusion
	Future Works
	Code
	Contributions
	Acknowledgement
	References

