
Deja µ: Revisiting microarchitectural optimizations
for security

Edwin Mascarenhas
Computer Science and Engineering

UC San Diego
emascare@ucsd.edu

Brandon Saldanha
Electrical and Computer Engineering

UC San Diego
bsaldanha@ucsd.edu

Arpan Dutta
Electrical and Computer Engineering

UC San Diego
adutta@ucsd.edu

Tanmay Patil
Electrical and Computer Engineering

UC San Diego
tpatil@ucsd.edu

Monil Shah
Electrical and Computer Engineering

UC San Diego
m3shah@ucsd.edu

Abstract—Due to power and area constraints, there is a tight
constraint on the available hardware in computer systems. As
such, to maximize performance by running multiple processes
at the same time or having data from multiple processes in
hardware, sharing memory between processes in mandatory. To
guarantee security between processes, having different security
checks and different privacy domains is a must. As shown time
and time again, it is possible to breach this security via security
attacks. In our paper, we discuss such architectural optimizations
proposed in recent times that do not consider the security aspect
while designing the optimization. We propose attacks that can
exploit these optimizations and suggest defences that may be used
to mitigate these attacks.

Index Terms—cache replacement, prefetcher, microarchitec-
ture, security, speculative vectorisation, Memory accesses, Cache
replacement, Instruction prefetcher, Translation Lookaside buffer

INTRODUCTION

Memory isolation is at the core of today’s operating sys-
tems. By ensuring that the user programs cannot access
another program’s memory or the kernel memory, isolation
between processes is maintained. This enables hardware to run
multiple processes at the same time on personal devices. This
can be extended to running multiple processes from different
users on the cloud on the same machine.

The Spectre [1] and Meltdown [2] microarchitecture attacks
were a huge blow to the computer architecture industry,
something that the industry is still trying to recover from.
They caused designers to go back and inspect all released
designs for possible security flaws that can be exploited. Micro
architecture bugs are often a side effect of microarchitectural
state modified by the victim process which are observed by an
attacker. These observations are used to infer and leak secret
information that ideally should remain resident only in the
victim’s protection domain.

For this study, we investigate three replacement policies:
Ship++ [3], Hawkeye [4], Reinforcement Learning based
replacement [5]; two instruction prefetchers: DJOLT, and
FNLMMA, and 2 other miscellaneous microarchitecture opti-

mizations: Speculative Vectorisation [6] and Early memory ac-
cess elimination. For each optimization we present a summary
of the feature, threat model, attack, mitigation strategy and
other related work that could be impact due to the proposed
attack.

The proposed attacks break all guarantees of security pro-
vided by the memory isolation implemented in computer
systems. These attacks target processes on modern desktop
machines and laptops as well as cloud servers. By crossing
security boundaries, unpriviledged processes can read data
from another process or read from priviledged locations/code
directly. Priviledged locations include memory of another
process, the kernel and in the case of kernel-sharing sandbox
solutions (e.g., Docker, LXC) or Xen in paravirtualization
mode, the memory of the kernel (or hypervisor), and other
co-located instances [2].

I. PHASE I

A. SHiP++: Enhancing Signature-Based Hit Predictor for
Improved Cache Performance

1) Threat Model: 1. THREAT MODEL- The goal of the
attacker is to infer secret data of the victim by observing meta-
data updates from a cache’s replacement policy. The proposed
attack allows to leak victim data with high accuracy, and thus
we also present a defense that mitigates current attack and
possible future attacks on similar lines. Our assumption is
based on following capabilities of the adversary :

• Adversary has the privilege to leak information through
cache side channels that rely on time precision measure-
ments. And has the privilege to flush cache lines

• Co-location : We assume that adversary to be co-located
on the same core as long as the last level cache is shared.
As long as attacker can get some ways allocated in the
cache line where the victim is allocated

• User-mode Access : The adversary should have standard
access like system calls that allow to run timing precision
calls



• Victim source code : The adversary is able to identify
gadget in the victim domain.

Apart from using cache side channels, we do not assume that
attacker is able to leak data through other channels. Any other
channel usage is outside the scope of current security impact

Fig. 1. Ship Attack

2) Exploitation:
a) Optimization: This paper is based on an earlier re-

placement policy called ship. The idea of the paper is to
associate reuse characteristics of a cache line based on the
signature of a line which can be a characteristic of PC and
other meta data. This is done by choosing what RRPV value
to be used on a cache hit/miss and associating corresponding
confidence counter for signature. The paper tries to improve on
the existing SHIP policy by suggesting multiple enhancements.
First enhancement is to insert lines with RRPV =0 for high
confidence (saturating) reuse of lines. Second is to weigh
cache hits and misses similarly(update on first reference) and
not have overtraining. Third enhancement associates RRPV =
3 (low priority) to writeback lines, since they are more likely
to be evicted from here as well. Fourth is to use different
signature for demand and prefetch requests and thus reduce
interference. Fifth is the update criteria of prefetch requests if
they are followed by prefetch or demand (less priority). Based
on these enhancements the paper is able to achieve a 6.2%
improvement in IPC over LRU for single core configuration
without prefetcher and 4.8% with prefetcher [3].

b) CAT: On top of the replacement policy, we assume
a CAT style partition to configure each process with a class
of service. This way it allocates logical ways to each process.
With CAT, any process can hit in any of the way, however a

process can cause eviction only from its assigned ways and
not from other ways assigned to other process.

c) Attack: Ship works by iteratively increasing the RRPV
of the ways of a cache line until It finds a cache line to be
evicted. For a non-CAT based shared LLC, the adversary can
simply prime the cache lines with its own data and wait for
Victim to load its data, if one of the adversary’s data gets
evicted, the victim has likely accessed a line. However things
are little different when CAT comes into picture. With CAT,
the attack becomes a little complicated. So to make things
simpler, the following toy example in Figure [add figure] can
be setup with initial state as shown below. Assuming a 4way
shared LLC with 1 way associated to Victim and 3 ways
associated with adversary, and the cache metadata is reached
to this state through priming the cache way. If the victim tries
to access data that misses in the cache, then the corresponding
metadata update happens for all ways, but the eviction happens
only from victim’s ways. The adversary then tries to load its
own data after some interval under which it thinks that victim
would have either accessed the data or not by then, it does a
Load D, which replaces some data in Adversary’s ways. Now
finally it loads B again to see whether transmitter accessed
some secret dependent data or not. And by monitoring the
time it takes to see if it is a Hit or a Miss for B, the access
of Victim can be inferred. Ship is a PC based policy, where
sample sets are monitored to examine with what confidence
should a line be placed in the Way. This can be overcome
by attacker by mistraining the SHCT Table i.e. by loading
data at different PCs and making all SHCT entries cache
friendly. By doing a periodic access pattern of Hits and Misses,
adversary can mistrain the SHCT table to install lines with
high confidence. The attack becomes a little more complicated
with multicore since SHCT now gets added with the core id
making the mistraining a little difficult for multicore systems.
There is one small need of reverse engineering here. Ship
chooses sample sets based on a random allotment. This might
be a little difficult to reverse engineer, but if it can be done the
mistraining can be reduced to a whole new level that covers
only Sampler Sets.

3) Mitigation: Our mitigation for this attack is similar to
DAWG [7] with certain additions. The very straight forward
defense for all such cache based attacks is to make sure
that both the ways and metadata updates are isolated for
different processes. The configuration of policy fillmap and
policy hitmap is software configurable which can be looked
up using domain id that can map to a process. Each memory
access must be tagged by this domain id. The original idea
of CAT being able to hit in other domain metadata now is
restricted by the programming of policy hitmap. If a way is
not allocated to a domain, it cannot hit in that way. Same for
the fill map, the cache cannot cause fill/eviction in metadata of
other domain. This also limits the usage of clflush instruction.
The DAWG paper also adds a metadata isolation block. The
metadata uses fillmap and hitmap to update metadata of the
cache line thereby making it invisible to infer what hits/misses
are observed by victim. One of the additional structures that



Fig. 2. Ship Defense

needs to be handled is the SHCT table. Since SHCT table
is a common structure, this too can cause different side
channel to leak data, by observing other data addresses the
SHCT based PC touches into, and due to aliasing (because
of lower bits usage) the effect can be manifold. So make
sure that SHCT table isn’t compromised, we should add an
additional domain id Identifier in the SHCT table that can only
change when a request corresponding to particular domain
is received. The same attack when tried with our defense
does not leak data and can be seen in Figure [ship defense]
There are two main overheads for this defense. One is SW
overhead in maintaining atomic operations that configure the
policy fillmap and policy hitmap. The performance overhead
of DAWG for this design will be 20% over baseline Ship++.
Regarding the timing, there won’t be much difference on the
critical path as the cache lookups are pipelined in nature and
can take an additional gate for checking. Regarding Hardware
Overhead, there will be at least domain id number of bits
multiplied by 16K entries overhead for the SHCT structure
partitioning.

4) Related work: The proposed attack is not just limited
to the above replacement policy, and can be generalized to
policies that are based on RRPV using a signature. So this
attack might be possible for even Hawkeye [4] and Lime [8]
which are based on PC and signature.

B. Hawkeye: Leveraging Belady’s Algorithm for Improved
Cache Replacement

Belady’s algorithm for replacement [9] is the optimal re-
placement policy often used to compare existing replacement
policies against. The optimal replacement policy cannot be im-
plemented because it needs knowledge of the future accesses.
Hawkeye [4] reconstructs Belady’s optimal solution on the past

history of accesses using the OptGen algorithm. It then uses
a PC-based predictor to learn from OptGen whether the load
instructions are cache friendly or cache averse and inserts it
with respective priorities.

For replacement Hawkeye uses the RRIP scheme where
each entry has a saturating counter associated with it that
increments when the sets are accessed. It has a OPT gen
vector which is used to keep track of the cache sets and the
usability of the cache line that are incoming. It improves over
baseline hawkeye by having separate predictors for prefetched
and demand accesses. It avoids loading lines that are the
same and back to back prefetch and demand access, reducing
redundancy. The predictors essentially use the occupancy
vector to figure if the line being brought in is cache-friendly
or will pollute the cache.

1) Threat model: The threat model for Hawkeye assumes
a shared LLC. The shared LLC is used as a covert vhannel
for the attack to leak data. The attack on these structures
don’t necessarily need the prefetches to be turned off. This is
because there is a separate predictor which tracks the metadata
for prefetches. Hence, only the prefetch predictor is updated on
a prefetch access and demand accesses are tracked separately
by the demand predictor. The algorithm ensure that there
are no redundant cache reloads. In other words, if line is
stored already by a demand or prefetch access it won’t be
prefetched again. This mitigates a lot of the noise that could
have been introduced due to normal prefetching that would
bring in all prefetch data. There still can be noise inserted into
the attack results due there being common structures like the
sampler cache. So, for most accurate results we wan to ensure
that prefetches are disabled. Intel CAT [10] doesn’t help this
replacement structure. All the Ways are still able to see and
change the RRPV counter values of all the tables. This allows
attacker processes to be able to change metadata of sets where
victim process’s data maybe cached. Further, PC attacks are
also possible since the SHCT is accessed by PC. It is possible
to mistrain the SHCT and cause evictions based on that. The
victim accessed must be another user process. Shared address
space is not necessary for this attack. However, for PC based
attack the shared address space is necessary.

2) Exploitation: The attack primarily involves an attacker
gadget that is used to update metadata in a way that causes the
RRPV values to leak secret data through FLUSH+RELOAD.
The following diagram gives an overview of the attack:

For the attack to work we need to mistrain the the replace-
ment policy to create the initial scenario shown in fig.3. In
this particular set we have 3 ways allocated to the attacker
and the remaining one is allocated to the victim. Intel CAT
is enabled here. When the RRPV values of the 3 sets of the
attacker’s protected domain are 5, 6 and 7 respectively, the
attacker can access it’s own way and determine if the victim
has accessed something in the set or not. It doesn’t matter
what the RRPV value of the victim’s way is. The attacker
performs cache accesses to ensure the counters are mistrained
to above values. When the victim access TX , is loaded in way
3, its RRPV value is set to 0 since it is recently accessed.



Fig. 3. Hawkeye Attack

Other RRPVs are incremented by one according to the policy.
If TX is not accessed by the victim, nothing changes. At this
point the attacker must probe for a value D that maps to the
same set. This will cause an eviction in either way 1 or way
2 based on the highest RRPV value from the left. Therefore,
either TB or TC will be evicted. By issuing another load that
loads TB we can determine if the victim accessed TX or not.
This will leak the secret value that causes TX to be loaded or
not based on its value.

3) Mitigation: For defense we need to ensure that the
attacker is unable to read the cache state or metadata. The
attacker should not be able to infer the secret from the
metadata. The right way to ensure this is to use DAWG style
partitioning based on protection domains. Essentially, we need
to ensure that the attacker does not have a covert channel. To
do that we use DAWG style cache partitioning. The attacker
will not have access to the victim ways since attacker can’t
hit or replace anything in the victim ways. The RRPV is
completely separated now.

As seen in fig.4 we can see that the attacker is no longer
able to modify victim metadata. This prevents it from attacking
directly. However, The PC based attack is still viable since the
SHCT can be mistrained by the attacker which is shared by
the victim. To avoid this, we suggest partitioning the SHCT
as well. There are 2 ways to do this:

• Divide SHCT into multiple ways. Preferably it is better to
have same number of ways as LLC. Then use protection
domains of LLC to provide access control to the SHCT
entries. This way the LLC and the SHCT are in sync

Fig. 4. Hawkeye Defense

but also the attacker is separated from the victim. This
is the DAWG style partitioning that can help with the
above mentioned attack but not effective against PC based
attacks.

• Provide separate SHCTs for separate cores. This involves
dividing the SHCt into 4 parts and hard coding them
to specific cores. Just like the sampled sets of hawkeye,
we would tag the SHCT with core id to make sure that
only one core is able to access it. This is needed in
addition to the above defense to ensure that PC based
attacks are not feasible. Since only one core is accessing
it, and cache covert channel is blocked, both PC based
and Cache based attacks are blocked.

The main overhead of these defences if that the tables are
now partitioned and hence less flexible. This would take a
small performance hit. The bigger overhead is the maintenance
of policy fillmap and policy hitmap like that in DAWG. It
would require OS changes and extra hardware registers for
implementing this. But it is not as bad as increasing issue
width or instruction queue. Hence, the power and area increase
should be nominal.

4) Related works: The closely related works which are
also vulnerable to this attack are policies that use PC based
signature tables and use RRPV counters for eviction. One such
policy is SHIP++ [3] which uses signature history indexed by
PC and RRPV as basic eviction mechanism. This attack will
also break that replacement policy. Lime [8] is also vulnerable
to this attack.



II. PHASE II

A. D-JOLT: Distant Jolt Prefetcher

The D-JOLT prefetcher [11] is a hybrid prefetcher consist-
ing of a long distance prefetcher, short distance prefetcher
and a fall back stream prefetcher. Prefetch distance is the
number of code blocks from where a prefetch is issued to the
prefetch target block. Prefetches issued with larger distance
have the advantage of issuing early prefetches but can have
lower prediction accuracy. To make up for this D-JOLT uses
a hybrid approach. D-JOLT is a branch predictor directed
prefetcher and keeps track of the target PC as determined
by the predictor. Each of the long range and short range
predictors compute a hash of the past respective longrange
histlen and shortrange histlen number of program counters
and the number of successive returns. This computed signature
is used to index into their respective miss tables and issue
prefetch requests for the respective code block(s). D-JOLT
achieves a 28.9% increase in IPC over a baseline with no
instruction prefetching.

1) Threat model: For this attack to work we need shared
instruction prefetcher between attacker and victim. The main
idea is to trigger a victim’s secret dependant prefetch that can
be observed by the attacker. The first problem is that can the
attacker miss-train the prefetcher to trigger a prefetch in the
victims code. This can only happen if the prefetcher is shared
among the victim and the attacker. This can be ensured by
making sure that the victim and the attacker runs on the same
physical core, either as hyper threads or as processes scheduled
on the same physical core.

• The attacker and the victim are separate processes that
has a shared D-JOLT prefetcher.

• The attacker is able to observe the prefetches made by
the victim.

• The attacker can expose the state of the internal variables
of the victim.

• The attacker knows the binary of the victim before hand.

2) Exploitation: The main idea of the attack is to trigger
a secret dependant prefetch in the victim code such that the
attacker is able to observe the prefetch and determine the value
of the secret. For this to work the attacker must first miss-train
the prefetcher to fetch something that the attacker is able to
observe in his own virtual address space. We know that the
shared libraries (like dll in windows) have the same virtual
address in every process.

Listing 1. Victim gadget
1 call func_v0
2 call func_v1
3 call func_v2
4 call func_v3
5 if (secret) {
6 call func_vf
7 }

In D-JOlt the prefetchs are triggered on function calls only
because these are on only parts of the code that do not have
spacial locality. So let’s assume that the victim code makes a
procedure call based of the secret as shown in the code above.
The attacker wants the ”call func vf” instruction to trigger a
prefetch which can be observed. Because the attacker know
the binary of the victim before hand, they can mistrain the
prefetcher.

Listing 2. Attacker gadget
1 call func_a_miss_train_0
2 call func_a_miss_train_1
3 call func_a_miss_train_2
4 call func_a_miss_train_3
5 call func_af // miss-training prefetches
6 // for this instruction
7 call func_a_pad_0
8 call func_a_pad_1
9 call func_a_pad_2

10 call func_a_pad_3
11 call func_shared_dll // target of the
12 //prefetch -> shared library

The first thing the attacker needs to do is to make sure
that the signature generated by victims target call (”call
func vf”) and attacks miss-training call is the same. This can
be made sure by reverse engineering the signature generation
scheme (it is actually already available in the DJolt paper) and
placing the attackers procedures ”func a miss train x” in the
required locations. D-JOlt has three prefetchers, and we are
only targeting the short ranged prefetcher that has a history
length of 4 and a distance of 4. Which mean it will use the
return address stack of last 4 procedure calls to generate a
signature and use the signature to prefetch a procedure that is
4 (distance) calls away from the current procedure call.

So now the signature generated by victim (call func vf) and
attacker (”call func af”) is the same. So the prefetch done by
these function calls will be the same. Now the next thing to
do is make sure the target of the prefech is some thing the the
attacker can reason about. So we choose a shared dll library
to be the target. For the short prefetcher the distance is 4, so
after 4 procedure calls we add a call to a shared library (dll).
We run this attacker code multiple times to train the prefetcher
to have high confidence in this preftech (of shared dll).

Now that the setup from the attacker is complete, the
attacker will flush the cache to make sure that the shared
library (dll) is not in the cache. Now the victim code runs
and depending on the secret the shared library will either be
prefetched or won’t be prefetched.



Listing 3. Attacker measurement
1 cpuid();
2 t1 = rdtsc();
3 cpuid();
4 call func_shared_dll
5 cpuid();
6 t2 = rdtsc();
7 cpuid();
8 time = t2 - t1;

Now the attacker can call the shared dll and measure the
execution time. We expect the time difference to is the order of
thousands of clock cycles (L1 latency versus RAM latency). If
the execution time is lower then the victim must have triggered
a prefetch on this shared dll. This reveals the victims secret.

We need to consider other complications in this attack that
we have not discussed yet. We want to make sure that the
prefetch to the shared library is not triggered by any other
function call. It may be triggered by not just short prefetcher
but by the long prefetcher or the next line prefetcher. Although
this is highly unlikely (in the order of 1 in 2048), but not
impossible. To make sure that the attack has as low noise as
possible we may want to calculate the signature for all the
calls and make it so that the signature of the target and any
other call is not the same.

This attack would also work in presence of CAT style
partitioning of the cache. This is because the cache hits can
be across domains in CAT scheme.

3) Mitigation: The security problem arises because of the
shared data structures of the prefetcher. For complete isolation
among processes we would require that no micro-architectural
data-structures are directly shared with malicious processes.
For this attack mitigation we would want that the prefetcher
data structure is isolated among processes.

• Dynamic signature generation. Use different hash func-
tions (determined at run time) for generation of signa-
tures. This makes it hard to miss-train the prefetcher, but
is not completely safe if someone is able to determine/-
manipulate the hash function. Almost no performance
overhead will be observed because we are only changing
the hash function to be dynamic.

• Use CAT style partitioning in the miss table and have
separate signature queue, so that the attacker is not able to
observe any meta data of the victim. This mitigation will
effectively reduce the number of targets a thread is able
to remember. We would also need to flush the prefetcher
on context switches. This would reduce the performance
improvements even further. So the net improvement ex-
pected after this mitigation would 5%.

• Use CAT style partitioning in cache along with DAWG
style meta data masking to stop the attacker from being
able to measure the prefetcher side-effects. This would
reduce the baseline performance but would futher in-
crease the prefeomance gains from DJolt prefetcher as
the effective cache size available to each thread would be
even lower. We expect the performance gains to improve

to around 40% over the new baseline and around 25%
over the old baseline.

Note the above mentioned mitigation only secures process to
process leakage of data. To secure leakage of data among
protection domains like user mode and kernel mode, the
prefetcher data structure either should not be updated (in
kernel mode) or should be even more fragmented (partitioned)
to avoid data leakage.

4) Related work: The attack that we describe here is not
limited to only this particular prefetcher, Any such prefetchers
that use a signatue based miss lookahead can be attacked
similarly like RDIP [12]

B. FNL+MMA Prefetcher

It is essential to decide which events trigger a prefetch to
perform well. The FNL+MMA prefetcher proposes to initiate
prefetch requests on I-Shadow cache misses. The I-Shadow
cache is s small cache that monitors misses from demands to
the cache. Spatial locality tells us that the following line is
likely to be used shortly, but fetching every next line leads to
over fetching and high bandwidth consumption. It is impera-
tive to determine the likelihood that the following line will be
needed soon. The FNL overcomes this difficulty by selecting
if the following line will be required and achieves a 16.5%
speedup while doing so. On the other hand, the sequence
of I-cache misses is partially predictable if no prefetching is
used. It can be said confidently that when a particular block
B misses, the nth block required after that block is often the
same block Bn. This can be said confidently for n as large as
30. The MMA predictor takes advantage of this property, and
with a 96KB FNL+MMA block, the machine achieves a 28.7%
speed up and decreases the I-cache miss rate by 91.8%. The
one downside to this implementation being the 38.3% increase
in L2 access.

On an I-Shadow cache miss, FNL prefetches contiguous
blocks, but it cannot fetch non-contiguous blocks. The MMA
prefetcher targets this limitation of the FNL prefetcher.

Without prefetching, it is possible to predict with high
accuracy the next block that should be prefetched when a
block miss occurs. This property holds even for the I-Shadow
cache that monitors demand accesses on the I-cache. Using
this property, when blocks B and B’ are missing consecutively
in the I-Shadow cache and B’ is missing in the I-Cache B’ is
associated with Block B in a ’next prediction’ table. When
the same association occurs twice, the entry is considered
highly correlated, and on the next occurrence of Block B, B’
is prefetched into I-cache.

The only downside to this method is that prefetches are
triggered too late. To avoid these late prefetches, the predictor
predicts the block that should be prefetched ’n’ blocks after a
miss on block B.

1) Threat model: The attack assumes a common prefetcher
between the attacker and victim. Our main agenda is for
a secret dependant instruction to trigger a prefetch to a
block which resides in shared memory, thus enabling us (the
attacker) to observe these prefetches which is turn enable us



to decode the value of the secret. The problems are similar to
the above D JOLT prefetcher where the first problem is that
can the attacker miss-train the prefetcher to trigger a prefetch
in the victims code. This can only happen if the prefetcher is
shared among the victim and the attacker. This can be ensured
by making sure that the victim and the attacker runs on the
same physical core, either as hyper threads or as processes
scheduled on the same physical core.

• The attacker and the victim are separate processes that
has a shared FNL+MMA prefetcher.

• The attacker is able to observe the prefetches made by
the victim in the shared memory by priming the last level
cache.

• The attacker can expose the state of the internal variables
of the victim.

• The attacker knows the source code of vicitm before hand
to identify how to use the hash function to place a shared
memory miss.

2) Exploitation: The idea of this attack is based on the
usage of shared memory call, which when prefetched by a
victim would allow the adversary to infer what block has
been executed by the victim. The FNL prefetcher is very noisy
since it can only prefetch at a distance of 5, whereas MMA
prefetcher can prefetch at a distance of 9 blocks, which makes
it suitable for us to base our attack. The main structure of the
MMA prefetcher is a miss table which associates a miss to
some prefetch address block. Two important things required
to know about the miss table is that it uses a hashing function
to index into the miss table and a partial tag to associate
the entry. Reverse engineering the functions is not required
since the code of the prefetchers is already available to us
which shows the hashing function. Tag bits are simply some
upper bits of the address which are partially used in the Block
address. We assumed that adversary knows what all addresses
are accessed by a victim before a secret dependent call. One
of the best things about I-Shadow cache, which associates
misses with addresses is that it is similar in structure to I-
Cache which makes us not to require any reverse engineering
of how entries are populated. Anything that the I-Cache would
be populated wit on a miss is what I-Shadow cache should be
populated with after a prefetch. Now with this in mind, if our
adversary is able to create a sequence of instructions that miss
cache and then the final function call at a distance of MMA
prefetcher distance is that of a shared library, our prefetcher
will learn with high confidence to associate the first miss in
the sequence of our attack that eventually caused the shared
library to be called as seen in listing 5 of adversary. After
mistraining, the adversary will evict the shared library from
the LLC. Now when victim is running similar sequence of
instructions with same number of misses in the I-shadow cache
with the first miss being same as adversary’s firs miss, it will
fetch the shared library call into the LLC cache which our
attacker can probe to find if the victim accessed any secret
dependent code as shown in listing 4 of victim . We don’t
care about other misses that are occurring in the victim code

but only about how many misses it generates. Now in order
for FNL prefetcher to not create noise and prefetch the same
library call, our adversary makes sure to associate the FNL
miss that would lead to a shared library call to be different
from a miss that would trigger the shared library call from
victim, thereby making sure that victim never calls the shared
library on any other sequence of misses.

Listing 4. Victim gadget
1

2 Miss A1 // Miss associated with MMA
3 Miss A2
4 Miss A3
5 ...
6 Miss A5 // Miss not associated with FNL
7 Miss A6
8 Miss A7
9 Miss A8

10 if (secret) { // 9\superscript{th} Miss
11 ...
12 }

Listing 5. Adversary gadget
1

2 Miss A1 // Miss associated with MMA
3 Miss A2
4 Miss A3
5 ...
6 Miss A51 // Miss associated with FNL
7 //but not with victim’s Miss
8 Miss A6
9 Miss A7

10 Miss A8
11 Miss A9 { // 9th Miss
12 shared_dll_call
13 }

Listing 6. Adversary measurement
1 cpuid();
2 t1 = rdtsc();
3 cpuid();
4 call shared_dll
5 cpuid();
6 t2 = rdtsc();
7 cpuid();
8 time = t2 - t1;

3) Mitigation: One of the defenses to prevent this attack is
to simply disable Hyperthreading. In some server applications
hyperthreading is disabled by default since it does not lead to
performance gains due to contention of resources. However, in
a personal use scenario, the hyperhreads are useful as they will
boost multiple single-thread performance. Hence, we need to
come up with a more sophisticated defense like DAWG. The
192 entry I-Shadow cache, 64K entry Touched and WorthPF
tables, a 8K-entry miss ahead prediction tables are all shared
in a core. These will all need to be partitioned into ways and



then allocated based on protection domains. Another option is
to store domain ID along with the data and allow update to
the data only of the domain ID matches that of the allotted
protection domain. The overhead of this would be mainly area.
We can still perform these lookups in one cycle but would
now require us to have multiple comparators to confirm the
domain ID and then issue the load to cache way. But increasing
area are also mean increasing power. Just like implementing
DAWG, the additional comparison for checking domain ID
will also incur only a small overhead. This is because we are
adding additional domain ID comparison to the cache TAG
comparison. The cache TAG value will be around 44 bits for
128MB LLC. The comparison bits will only be at most equal
to the number of ways of the LLC. If we assume 16 ways,
it’s only 4 bits which an order of magnitude less than 44.
Hence, this is a cost effective mitigation strategy. However,
since the 8k-entry miss ahead table is not available entirely to
the victim process, there will a performance hit. Specifically
the table will be divided into LLC way number of partitions.
This will cause the victim to only access a part of the table
for referencing the miss history. The number of data points
available will reduce and the performance hit will be almost
equal to the number of partitions. The performance gain is still
there however it will be approximately 15x gain. It will not
be exactly 16x since there are still some common structures
that can be accessed but not used for the attack.

4) Related work: The MMA predictor works on the prin-
ciple of fetching blocks whenever a miss on another block
has occurred. When the same blocks are found to be missing
in succession with a gap of a particular number of cycles,
the latter block is prefetched. All of the prefetchers that
use this method of prefetching are vulnerable to the attack
described above. An example of this is the Temporal Ancestory
prefetcher [13] and MAMA [14] which keeps a track of the
prefetches caused due to a previous missing block. When the
prefetcher is mistrianed to prefetch a particular block using
this concept of distance based prefetch, the secret value can
then be leaked.

C. Speculative Vectorisation with Selective Replay

Vectorisation is a technique to perform an operation on
multiple components of a vector, often referred to the SIMD
programming model. Today’s modern day ISAs like x86, ARM
and RISC-V support vector instructions and processors have
vector registers and execution units to speed up variety of
workloads. Vectorisation compiler passes can convert some
loops into vector instructions. However compilers fail to
vectorise code in the presence of unknown or infrequent
data dependencies thus leaving a lot of performance on the
table. Selective Replay Vectorisation (SRV) [6] proposes to
optimistically vectorise code at compile time even if the
dependencies cannot be determined. At run time, if memory
dependency violations are detected in some of the vector lanes
it selectively replays those lanes.

When the compiler cannot determine the memory depen-
dencies in a loop but chooses to speculatively vectorise the

code it inserts the instructions between a srv start and srv end
instructions. This region is called the SRV-region. A predicate
register called SRV-replay register is used to indicate which
vector lanes should be executed. On the first execution all the
bits in the register are set. Dependency checks are performed
in the Load Store Unit (LSU). If any violations are detected,
another predicated register SRV-needs-replay register is set
depending on which lanes had the violation and need to be
replayed. At the end, if any of the bits in SRV-needs-replay are
set, then the value is copied to SRV-replay and the execution
repeats. This continues till all the lanes have been executed
after which it exits the SRV region.

1) Threat model: For this attack we consider personal
computers and virtual machines in the cloud that supports
Vector instructions. We also assume that the Speculative
Vectorisation optimization is enabled. The attacker also has
access to a compiler that can generate speculatively vectorised
code. We assume that the attacker has unpreviliged access to
run programs on this machine. We assume the attacker can
perform prime + probe or flush + reload kind of attacks to infer
things about the cache microarchitectural state. The Operating
system being run on as well as compiler is bug free, i.e. the
attacker isn’t exploiting a software vulnerability to leak the
information. Lastly this attack would work even if the code
region has defenses against spectre like inserting an lfence
instruction to serialize the order of instructions as the exploit
detailed in the next section can be applied irrespective of this.

2) Exploitation: To construct the exploit we use an impor-
tant feature of the attack. In SRV, if an exception occurs during
execution, the lane number where the exception occurred
is identified. Only if the lane is the oldest lane currently
executing, i.e. the lane is the first set bit from the LSB in
the SRV-replay register the exception is raised and handled.
If it is not the oldest lane then the lane is simply marked
for re-execution. This is done to guard against exceptions that
could occur as a result of using erroneous data after a memory
dependence violation. We exploit this by inserting an out of
bound access to the location in memory we want to leak in a
vector lane that isn’t the oldest lane. Consider the following
snippet of code:

Listing 7. Speculative vectorisation exploit gadget
1 int *x = read();
2 for (i=0; i<N; i++) {
3 a[i] = b[a[x[i]]* 4096];
4 }

Here the array x contains attacker provided values. For
example, x = {0, outofboundsvalue, 1, 2}. An array of
attacker values is provided so that the compiler vectorises the
load to a gather instruction. For the toy example we assume
that there are 4 vector lanes. When the compiler vectorises
this code for the first time all bits are set in the SRV-replay
predicate register indicating that all lanes should execute. The
out of bounds value can be set to address of secret byte -



base address of a. Lane 0 will execute load for a[0], Lane
1 will execute the load for the address of secret byte and so
on. There will be an exception caused in lane 1 due to the
invalid access, but since the oldest executing lane is lane 0,
the exception will not be raised here but the SRV-needs-replay
register will be set to 0b0010 indicating that the second lane
has to be replayed. When the execution of the remaining lanes
completes, the value of SRV-replay is set to 0b0010 and the
SRV region is re-executed. At this time again the same access
will cause an exception. However the previous load to the
address of the secret would have completed and depending on
the value of the secret byte, the corresponding cache line for
array b will be touched. The attacker can use prime+probe or
evict + reload mechanisms to find out what was the value of
the secret byte. However since the code is vectorised, several
sets in array b will be loaded. To distinguish them, the attacker
runs the code first with all legal values in array x that are
within bounds for a. After this one of the values is replaced
with the out of bounds access. Depending on which set was
differently accessed the second time, the value of the secret
byte can be determined.

3) Mitigation: The key differentiating factor from spectre
based attacks is that inserting fences can help mitigating a
spectre-like attack [1], but this won’t work for this attack since
this exploits the exception suppression mechanism of specu-
lative vectorisation. Secondly this doesn’t involve mistraining
the branch predictors, so any mechanism to harden the branch
predictor wouldn’t be able to stop this attack.

Mitigation-1: A strong possible mitigation strategy like
the one proposed in [15] can be modified to protect against
this attack. In InvisiSpec, the unsafe speculative loads read
data into a new Speculative Buffer (SB) instead of into the
caches and thus avoid modifying the cache hierarchy. The
data in the SB is completely free of even the cache coherence
transactions. When the load is finally safe InvisiSpec makes it
visible to the rest of the system. This is done by re-performing
the operation. The SB can be used even for the speculative
memory accesses done during the SRV region. Once the PC
encounters the srv start instruction, the loads following that
should be issued to the SB. Only after srv end and when SRV-
needs-replay register is 0 the loads should be reflected back
into the memory subsystem. The estimated slowdown for this
approach is similar to that mentioned in the paper i.e. 21%
overhead.

Mitigation-2: An alternate mitigation strategy could be
to undo the loads based on the address corresponding to
the set bits in the SRV-needs-replay register. If an exception
is caused in any of the lanes, a bit is set in the predicate
register. An additional table should be maintained to keep
track of the load memory addresses corresponding to each
lane. The size of this table would be 64bits * number of vector
lanes. Depending on whether the SRV-needs-replay is set, the
corresponding memory address should be flushed from the
cache. Alternatively the load could also be squashed. This is
a low-overhead mechanism to prevent the attack.

4) Related works: There are several other similar work on
which the proposed attack could be modified and deployed.
For example in the microarchitecture proposed by Pajuelo et.
al [16], previous history is maintained to predict whether a
group of scalar operations is vectorisable or not. This infor-
mation is used to execute the instructions in vector mode and
incase of misspeculation a recovery mechanism is applied. The
SRV attack can be re-purposed here by having a mistraining
phase before launching the attack. Similarly the work on
speculative vectorisation by Rakesh et.al [17] uses a software
emulation layer to keep track of scalar instructions that can
be transformed into vector instructions. This is similar to the
scenario of the current attack except the vectorisation pass is
done dynamically instead of using a compiler. Another similar
work by Kumar et. al. [18] that speculatively reorders ambigu-
ous memory references to create vectorisation opportunities
could be targeted using a modified version of the proposed
SRV attack. Thus this attack can be modified and deployed in
various other scenarios.

D. Designing a Cost-Effective Cache Replacement Policy us-
ing Machine Learning

As caches are limited in size, it is required to update the
cache block constantly with the most optimal data that will be
used in the not-too-distant future. Besides this, cache replace-
ment lies on the critical path for a processor execution. Having
a versatile cache replacement policy is very important as this
gets translated to IPC gains. The paper starts from scratch by
considering a huge number of factors that affect IPC based on
cache replacement that include the offset, preuse, access type,
set number, set accesses, etc. [5]. Based on an extensive rein-
forcement learning model developed by the authors and tested
on multiple SPEC and Cloudsite benchmarks with the entire
cache state as input to the model, the authors filter out the
features that contribute most to determining the optimal cache
state. The paper then implements these features in hardware
and moves on to optimize these better to reduce hardware
and power consumption. RLR (the policy implemented in the
paper), achieves a 3.25% and 4.86% improvement over LRU
with a meagre 4.7% increase in hardware budget.

1) Threat Model: The attack assumes that the cache lines
brought into the cache during the setup phase are brought in by
the attacker directly and not by the prefetcher. The RLR policy
makes use of the type of cache block (whether brought in by
the prefetcher or not) while calculating the priority of lines to
evict. Having the prefetcher interfere in our setup may lead to
noise in the setup phase which would be reflected in the actual
attack and reduces the efficiency of the attack overall. The
attack works on a vanilla cache with no protection domains
and can also break into an Intel CAT [10] style partitioned
cache. The attack takes advantage of the cache replacement
policy that inadvertently leaks data to other processes that are
occupying the cache set at the same time. We show that even
with CAT protection enabled, the one common data structure
that remains leaks data in the form of evictions in the other
processes ways. The attacker can be an unprivileged process



and the victim can be either unprivileged (different process)
or privileged (kernel). The attacks consider a reuse distance
value of 0 for ease of explanation. The reuse distance is a
learnable parameter and the attacker can maliciously train the
policy to adopt this value during the setup phase, just before
the attack

2) Exploitation: The attack proposed by us is a cache
metadata based attack; we make use of a common table that
is used to keep track of all misses in the sets of the cache and
by manipulating values during the setup phase.

Fig. 5. RLR suggested attack

The metadata used in RLR is a 3 bit miss counter maintained
for each set in the cache, a 2 bit age counter used to indicate
how many accesses have occurred since the cache line was
brought in, a 1 bit hit register that is used to indicate if the
cache line was accessed and lastly, a 1 bit type register. The
type register is used to indicate if the cache line inconsidera-
tion was brought in due to a prefetch or if it was an intentional
action from the program. For the multicore design, RLR also
stores the core number and uses this to calculate the priority
of replacement. As the timing difference is to be observed in
the attacker process which will run on the same core, having
the victim running on a different core is of no consequence to
the attack.

As the RLR plocy does not use the PC for any computations,
there is no scope for PC aliased attacks and hence we focus on
attacking the metadata used to keep track of the lines directly.
In the toy example shown in figure 5, the setup phase sets
the metadata for the policy to have the maximum possible
set miss value such that any miss in the set will cause the
counter to roll over and increment all age counters for lines
in sets. We make sure that the hit registers for all line are
set by accessing these lines once they are brought in. As the

threat model states, we make sure that none of the lines are
brought in due to prefetches and this ensures that the prefetch
bit for all lines are reset. Depending on the victim’s access
pattern, the cache state in modified in different ways. On an
attacker access after a victim access, the first way in the set
is evicted whereas the second way is evicted if the victim has
not accessed any data. By probing for the victim access data
by checking for data filled into the attacker sets, based on
the difference in timing between accesses, we can accurately
predict the value of secret data. At the L3 cache (LLC) level,
a hit costs 200 cycles whereas a miss costs about 400 cycles.
This can easily be timed and used to check which block is
missing from the attacker ways to leak data from the victim
process. An extension of the attack can also be performed on
the L1 cache level, where the victim thread running on the
core leaks data to the attacker thread running on the same
core via the L1 cache. As our previous attack covers a wider
possibility of attacks with processes running on different cores
and our suggested defense takes care of all scenarios, we do
not focus on this L1 cache attack in detail.

3) Mitigation: The attack described for RLR is only possi-
ble due to the common miss counter in the set. If this counter
is separated for each line, the above cache timing attack is
rendered useless. This is shown in figure 6. Separating the
age and miss counters was an optimization suggested in the
paper to reduce hardware usage while sacrificing performance.
Adding a separate miss counter to each line in cache would
incur a 47% and a 67% increase in hardware requirement than
the optimized vulnerable version. The unoptimized version
of the RLR policy is 10% faster than the optimized version.
The Hawkeye predictor which has a comparable budget to the
unoptimized RLR policy is 20% slower than the latter. Thus,
for a specification with a higher budget, the secure RLR policy
still performs as good as the competition.

4) Exploitation: The attack proposed by us is a cache
metadata based attack; we make use of a common table that
is used to keep track of all misses in the sets of the cache and
by manipulating values during the setup phase.

5) Related works: Replacement policies generally have
data structures that get updated whenever there is a miss/hit
in the cache. This form of attack is common for replacement
policies that have a shared data structure between them like
LRU, DRRIP [19] and KPC [20]. Replacement policies that
use a PC based table to insert lines with specific metadata
are out of the scope this defense as the defense focuses on
removing the common metadata structure in the cache itself.
PC based attacks do not work on RLR because the PC is never
used to decide the line that will be replaced.

E. A Unified Approach to Eliminate Memory Accesses Early

The ”A Unified Approach to Eliminate Memory Accesses
Early” proposes Unified Cache (UC) that can act as a small
value cache (narrow-width cache) [21] and memory location to
register file mapping. Both these structures unified in a single
structure are aimed at reducing accesses to the remainder of
the memory system (caches - L1, L2, L3 and RAM). The first



Fig. 6. RLR suggested defense

main idea is that the compiler only has a handful of registers
to work with but the actual physical register file has a lot
more number of registers. So some value the are being loaded
in to the cache were already available in one of the physical
register. So instead of getting that data from the caches or
RAM, this access can be satisfied from within the CPU. The
paper proposes to have a Register File Cache Pointer (RFCP)
that is indexed into using the register ID and stores the value
in that register along with the memory locations (pointers) that
have the same value. The register ID that hold the same value
as the memory location is retrieved from the UC and used to
index into the RFCP to get the data. The second main idea,
Small Value Cache (SVC), is aimed at satisfying loads and
silent stores that access small valued integers (8-bits). The
memory address is used to index into the UC which stores
these small values. The UC is a cache like structure that is
index into using memory address. Every entry in the UC can
either be small value entry or a memory location to physical
register mapping. The UC and RFCP is a structure that is
shared among hyper-threads. This shared structure can expose
hidden secrets from one thread to another.

1) UC - Working: As discussed before the UC is similar
to a normal cache. The address or memory location is used
to index into the UC. The entry will either store SVC entry
or a Reg ID (memory location to physical register mapping).
Whenever a store instruction is encountered, We first check if
the entry already exists in the UC. If there is a Tag match, the
entry already exists in the UC, else a previous entry is replaced
using LRU replacement policy. The value of the store is always

available in the PRF immediately after the store. So the entry
inserted is a Reg ID. The status bits for every entry indicate
if the entry is SVC entry or Reg ID or qualifies for both. If
the entry qualifies for both then the entry created is used as
Reg ID until that physical register is renamed and its contents
are updated. If that happens then that entry becomes a SVC
entry.

2) RFCP - Working: The RFCP tracks all the memory
locations associated with the physical registers. The Reg
ID is used to index into this structure. Every entry stores
P addresses. These are the addresses associated with that
physical register. If the contents of a register changes then
the physical register no longer has the same contents as the
memory locations. So the entries in the UC corresponding to
these P addresses are invalidated.

The RFCP is a powerful tool that can be used by the attacker
to steal secret information from the victim.

3) Threat Model: We assume an attacker can execute
unprivileged instructions on the victim system. Our attack
requires monitoring the state of the UC and RFCP shared
with the victim program. In native execution, this is simply
possible by using CPU affinity system calls to achieve core
co-residency with the victim process. In cloud environments,
previous work shows it is possible to achieve residency on
the same machine with a victim virtual machine [22]. Cloud
providers may turn hyper-threading on for increased utilization
(e.g., on EC2) making it possible to share cores across
virtual machines. Once the attacker achieves core co-residency
with the victim, she can mount a UCleak attack using the
shared unified cache (UC) and Register File Cache Pointer
(RPCF). This applies to scenarios where a victim program
processing sensitive information, such as cryptographic keys.
(The structure of the Threat Model was inspired from TLBleed
paper [23].)

• The attacker and the victim are two different processes
running on the same core.

• The CPU should have SMT enabled.
• Attacker can expose internal variables of the victim.
• Victim program should be known to the attacker.
4) Covert Channel - UC: Same as regular cache side-

channel attacks, the UC is also vulnerable to Prime+Probe.
Unlike normal cache a new entry is only added to the UC
on store instructions. We can use the SVC feature of the UC
to populate the entire UC with SVC entries of the attacker.
Any loads to these memory locations would then be satisfied
by the UC. If the victims kicks out and entry, the load to
these memory locations will take longer. The difference in the
timing would be small. The access to UC should happen in 1
cycle while the access to L1 would take around 4 clock cycles.
We can amplify the measurement by loading the same memory
location 100s of times. Since load would not populate the UC,
if an entry is missing from the UC it will not be added until
there is a store at that location.

5) Covert Channel - RFCP: RFCP is the best tool is
attackers arsenal. The RFCP associated Reg ID to memory
addresses. It does not track who populated the physical register



in the first place. If the Victim performs a store and the
attacked had a register populated with the same value as the
victim’s store. Then the RFCP would associate that memory
location to attackers physical register, kicking out the attackers
entry. So instead of leaking 1-bit at a time, The RFCP can
expose the entire value of the victim’s secret.

6) Exploitation - Attack 1: This attack targets the SVC
feature of the UC. The UC is shared between hyper-threads.
So any modifications to the state of the UC can be probed by
an attacker to reveal secret information.

Listing 8. Victim Gadget - Attack 1
1 if (secret) {
2 store small value
3 }

The entries in the UC are only inserted/replaced on store
instructions. If we assume that the Victim processes has only
one small valued store that is dependant on the the secret,
the attacker can simple use Prime+Probe attack on the UC
to reveal the secret. Note that this attack will also work with
ASLR because we are assuming there is only a single small
valued store. It does not matter which attacker entry (set) it
kicks out of the UC.

However these conditions are hard to come by. Stores that
are not small valued stores will also be inserted in the UC as
memory address to register ID mapping. This adds noise to
our measurements.

7) Exploitation - Attack 2: This attack targets the Reg ID
feature of the UC.

Listing 9. Victim Gadget - Attack 2
1 if (secret) {
2 store value
3 }

If the victim performs a secret dependant store, it will kick
out the attackers entry from the UC. It will also kick out the
RFCP entry. The attacker can prime the UC with SVC entries
and probe it to detect an eviction from the UC.

The attacker can also prime the UC+RFCP by using mul-
tiple independent stores, there by filling up both the UC and
the RFCP. The load values to check if there was an eviction.

Again these conditions are hard to come by. If the victim
code uses a lot of registers, then their contents would be
changed and out primed UC+RFCP entried would be inval-
idated.

8) Exploitation - Attack 3 (Real world attack): This attack
targets the UC and RFCP as a whole. We have seen constrained
attacks where there are many conditions on the victims gadget.
Now let look at a more generic victims gadget.

Listing 10. Victim Gadget - Attack 3
1 if (secret) {
2 func1();
3 }
4 else {
5 func2();
6 }

Assume the Victim performs one of two computations
depending on the secret as shown above. The register usage
footprint and usage of store instructions in these computations
would be vastly different (or lets assume they are different).
We can perform a TLBleed like attack on shared UC and
RFCP.

The attacker would constantly prime the UC with small
value stores and probe with loading these memory locations
and measuring the latency. If the loads are satisfied by the UC
the latency would be lower else the load would take longer.
The cpuid instruction would help us measure the latency
of the loads. We expect the latencies to be small values.
To avoid interference of the storing these latencies with our
Prime+Probe attack on the UC we can add a constant large
value to the latencies before storing them.

Listing 11. Attacker Measurement code
1 loop_1:
2 store small_value to Ax
3 ..
4 .. // populate the entire UC
5

6 loop_2:
7 cpuid();
8 t1 = rdtsc();
9 cpuid();

10 load Ax // measure latency
11 cpuid();
12 t2 = rdtsc();
13 cpuid();
14 latency = t2-t1

Because the victim code is already known to us we can train
a ML model to identify the secret from the collected signal
(latencies). If ASLR is enabled on the victim’s system, we
can train another ML model that can identify the the offset
in the set number created by the ASLR. Because the UC and
RFCP are very small structures that can be accessed in 1 clock
cycle the time granularity of our measurements would be much
higher that TLBleed attack.

9) Exploitation - Attack 4: The RFCP associated Reg ID to
memory locations. However that register might be populated
by the attacker. The cross thread association can reveal secret
information.

Listing 12. Victim Gadget - Attack 4
1 store secret



If the range of values of the secret is limited then the
attacker can reveal the value of this secret. Lets assume that
the value of the secret can be one of 8 different values, 0 to
7. The attacker can perform 8 stores with these values and
keep the data values intact in the logical registers. This would
mean that the physical registers associated with these logical
register cannot be added to the free list for register renaming.
Also these stores would create a association of these physical
registers with the memory addresses of the store the attacker
just performed in the RFCP. When the attacker store the secret
The RFCP will be updated with the memory location of the
victim’s store address. This will kick out one of attackers
association. Depending on which association was kicked out,
the attacker can determine the value of the secret. This attack
assumes that there won’t be any other stores in the victims
code with a value 0 to 7.

Listing 13. Attacker Measurement code
1 store 0 to A0
2 store 1 to A1
3 ..
4 store 7 to A7
5

6 // Victim code runs
7

8 loop_1:
9 cpuid();

10 t1 = rdtsc();
11 cpuid();
12 load Ax // measure latency
13 cpuid();
14 t2 = rdtsc();
15 cpuid();
16 latency = t2-t1

For the dummy code above we assume that the RFCP only
holds one memory address corresponding to every Reg ID.
The attack would also work if there were P memory addresses
linked to every Reg ID. The attacked would have to make
multiple store with the same value to Prime all of RFCP.

Similar to our previous discussion if the difference in
latency is too low, we can take multiple measurements to
amplify the timing difference. For example, if the access time
of UC+RFCP is 1 cycle and L1 cache is 4 cycles. loading the
same location 100 times would give us a timing of 100 cycles
for UC+RFCP and 400 cycles for L1 cache.

10) Mitigation: The problem is the shared structures. The
following mitigation are possible.

• Separate UC+RFCP structures for hyper-threads. Al-
though this sound unreasonable, The UC and RFCP are
very small structures amounting to less than a kilobyte
in size. Since modern processors do not support more
than 2 hyper-threads per core, replicating these structures
is the best solution. The sizes of the UC and RFC can
further be reduce if necessary. This mitigation increases
the size overhead of the optimization by 100%, but does
not reduce the performance of the optimization. In-fact it

would result in even better performance due to no aliasing
among hyper-threads. This mitigation does not deal with
the covert-channel created by having a PRF.

• Partitioning the UC and tagging Physical registers with
hyper-threads so that cross thread association is not pos-
sible in RFCP. The CAT [10] like partition of UC would
have to be accompanied by DAWG [7] like masking
scheme for LRU metadata. This scheme would required
either static or dynamic partitioning of UC. Dynamic
partitioning might also required software support based
on the implementation choices. We expect the perfor-
mance improvement to drop from 8-13% to 4-5% due to
reduction in the size of the UC available to each hyper-
thread. The size overhead would be in the range of 10s of
bytes. Tagging the physical registers would only required
1 bit per physical register.

11) Related works: There have been many studies on
eliminating memory accesses using extra caches. Any study
that uses extra level of cache is venerable to this attack.
Although the idea of satisfying some load from with in the
cpu by using free registers is an innovative idea, it poses new
security threats. The following works are also affected by these
attacks.

• SVC like optimizations - [24], [21], [25]
• Reuse of Register File contents - [26]

III. CONCLUSION

The most basic assumption when running code on a proces-
sor is that data accessed in the process is isolated form other
processes ensuring that the data being processed on cannot
be accessed by other processes. The safety checks required to
implement this are done in software and the hardware designer
need not worry about these. As shown time and time again,
this is not the case. Previously implemented attack such as
flush+reload [27], prime and probe [28] can easily read the
state of the cache modified by another process. With attacks
such as spectre [1] and meltdown [2] which were a huge
blow to the hardware industry, it is imperative to consider
security while striving for increased performance and lower
power consumption. The attacks described in the paper are
but a tiny drop of possible attacks in the humongous ocean of
hardware optimizations. Through this paper, we want to raise
awareness of security-aware hardware optimizations.

ACKNOWLEDGEMENTS

The authors wish to thank Samira Mirbagher Ajorpaz for
her continued guidance and effort throughout the quarter along
with her suggested timelines to keep the project progress in
check. We want to thank Zhenya Ma for supporting us with
constructive feedback on our work and for all the infrastructure
related support. We wish to thank our apartment mates who
helped us get through the quarter and kept us motivated
throughout the project.



REFERENCES

[1] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1–19. IEEE,
2019.

[2] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown. arXiv preprint arXiv:1801.01207, 2018.

[3] Vinson Young, Chia-Chen Chou, Aamer Jaleel, and Moin Qureshi.
Ship++: Enhancing signature-based hit predictor for improved cache
performance. In The 2nd Cache Replacement Championship (CRC-2
Workshop in ISCA 2017), 2017.

[4] Akanksha Jain and Calvin Lin. Hawkeye: Leveraging belady’s algo-
rithm for improved cache replacement. The 2nd Cache Replacement
Championship, 2017.

[5] Subhash Sethumurugan, Jieming Yin, and John Sartori. Designing a
cost-effective cache replacement policy using machine learning. pages
291–303, 2021.

[6] Peng Sun, Giacomo Gabrielli, and Timothy M Jones. Speculative
vectorisation with selective replay. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), pages 223–
236. IEEE, 2021.

[7] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas De-
vadas, and Joel Emer. Dawg: A defense against cache timing attacks
in speculative execution processors. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 974–
987, 2018.

[8] Reena Panda Jiajun Wang, Lu Zhang and Lizy Kurian John. Less is
more: Leveraging belady’s algorithm with demand-based learning. 2017.

[9] Laszlo A. Belady. A study of replacement algorithms for a virtual-
storage computer. IBM Systems journal, 5(2):78–101, 1966.

[10] Andrew Herdrich, Edwin Verplanke, Priya Autee, Ramesh Illikkal, Chris
Gianos, Ronak Singhal, and Ravi Iyer. Cache qos: From concept to
reality in the intel® xeon® processor e5-2600 v3 product family. pages
657–668, 2016.

[11] Tomoki Nakamura, Toru Koizumi, Yuya Degawa, Hidetsugu Irie,
Shuichi Sakai, and Ryota Shioya. D-jolt: Distant jolt prefetcher. The
1st Instruction Prefetching Championship (IPC1), 2020.

[12] Aasheesh Kolli, Ali Saidi, and Thomas F. Wenisch. Rdip: Return-
address-stack directed instruction prefetching. pages 260–271, 2013.

[13] Mingju Li, Elizabeth Varki, Swapnil Bhatia, and Arif Merchant. TaP:
Table-based prefetching for storage caches. In 6th USENIX Conference
on File and Storage Technologies (FAST 08), San Jose, CA, February
2008. USENIX Association.

[14] Pejman Lotfi-Kamran Ali Ansari, Fatemeh Golshan and Hamid Sarbazi-
Azad. Mana: Microarchitecting an instruction prefetcher. 2020.

[15] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christo-
pher Fletcher, and Josep Torrellas. Invisispec: Making speculative
execution invisible in the cache hierarchy. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 428–441. IEEE, 2018.

[16] Alex Pajuelo, Antonio González, and Mateo Valero. Speculative
dynamic vectorization. In Proceedings 29th Annual International
Symposium on Computer Architecture, pages 271–280. IEEE, 2002.

[17] Rakesh Kumar, Alejandro Martı́nez, and Antonio González. Speculative
dynamic vectorization for hw/sw codesigned processors. In 2012 21st
International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 459–460. IEEE, 2012.

[18] Rakesh Kumar, Alejandro Martı́nez, and Antonio González. Assisting
static compiler vectorization with a speculative dynamic vectorizer in
an hw/sw codesigned environment. ACM Transactions on Computer
Systems (TOCS), 33(4):1–33, 2016.

[19] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, and Joel Emer. High
performance cache replacement using re-reference interval prediction
(rrip). page 60–71, 2010.

[20] Jinchun Kim, Elvira Teran, Paul V. Gratz, Daniel A. Jiménez, Seth H.
Pugsley, and Chris Wilkerson. Kill the program counter: Reconstructing
program behavior in the processor cache hierarchy. SIGPLAN Not.,
52(4):737–749, apr 2017.

[21] M. d. Islam and P. Stenstrom. Zero-value caches: Cancelling loads
that return zero. In Proceedings of the 22nd International Conference

on Parallel Architectures and Compilation Techniques, pages 237–245,
Los Alamitos, CA, USA, sep 2009. IEEE Computer Society.

[22] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. A placement vulnerability study in multi-tenant public
clouds. In Proceedings of the 24th USENIX Conference on Security
Symposium, SEC’15, page 913–928, USA, 2015. USENIX Association.

[23] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation leak-aside buffer: Defeating cache side-channel protections with
TLB attacks. In 27th USENIX Security Symposium (USENIX Security
18), pages 955–972, Baltimore, MD, August 2018. USENIX Associa-
tion.

[24] Hui Zeng and Kanad Ghose. Register file caching for energy efficiency.
In Proceedings of the 2006 International Symposium on Low Power
Electronics and Design, ISLPED ’06, page 244–249, New York, NY,
USA, 2006. Association for Computing Machinery.

[25] Mafijul Md. Islam and Per Stenström. Characterization and exploitation
of narrow-width loads: the narrow-width cache approach. In CASES ’10,
2010.

[26] Soner Önder and Rajiv Gupta. Load and store reuse using register file
contents. In Mario Mango Furnari and Efstratios Gallopoulos, editors,
Proceedings of the 15th international conference on Supercomputing,
ICS 2001, Sorrento, Napoli, Italy, June 16-21, 2001, pages 289–302.
ACM, 2001.

[27] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolu-
tion, low noise, l3 cache Side-Channel attack. pages 719–732, August
2014.

[28] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin,
Yossi Oren, and Yuval Yarom. Prime+Probe 1, JavaScript 0: Overcoming
browser-based Side-Channel defenses. pages 2863–2880, August 2021.


	Phase I
	SHiP++: Enhancing Signature-Based Hit Predictor for Improved Cache Performance
	Threat Model
	Exploitation
	Mitigation
	Related work

	Hawkeye: Leveraging Belady’s Algorithm for Improved Cache Replacement
	Threat model
	Exploitation
	Mitigation
	Related works


	Phase II
	D-JOLT: Distant Jolt Prefetcher
	Threat model
	Exploitation
	Mitigation
	Related work

	FNL+MMA Prefetcher
	Threat model
	Exploitation
	Mitigation
	Related work

	Speculative Vectorisation with Selective Replay
	Threat model
	Exploitation
	Mitigation
	Related works

	Designing a Cost-Effective Cache Replacement Policy using Machine Learning
	Threat Model
	Exploitation
	Mitigation
	Exploitation
	Related works

	A Unified Approach to Eliminate Memory Accesses Early
	UC - Working
	RFCP - Working
	Threat Model
	Covert Channel - UC
	Covert Channel - RFCP
	Exploitation - Attack 1
	Exploitation - Attack 2
	Exploitation - Attack 3 (Real world attack)
	Exploitation - Attack 4
	Mitigation
	Related works


	Conclusion
	References

