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ABSTRACT

With increasing memory wall, it becomes crucial to im-
prove the Cache Hits. Memory Latency can be hidden through
multiple means. Out-of-Order execution is one such paradigm
however it would still reach a bottleneck in fetching new set
Instructions. Prefetchers alleviate this problem by bringing
the likely to be used Instruction/Data Blocks before it is ac-
tually used. This paper presents design analysis of two of
the 3 Winner Prefetchers at the 1st Instruction Prefetching
Championship based on the Simulator ChampSim.

1 Introduction
With growing instruction-working set among neural net-

work, cloud and server applications, instruction foot print is
ever increasing and so is instruction cache misses. Instruction
prefetchers effectively hide cache miss latency by prefetching
the blocks speculatively. This is done in separate buffers so
as to not affect the normal cache operation through cache
pollution or conflict misses. If the data isn’t used there is
no additional penalty in comparison to not using prefetchers.
This paper is organized as follows : Section 2 provides high
level summary of 3 winner prefetchers at the 1st Instruction
Prefetcher Championship, Section 3 lists important aspects
of two of the Winner Prefetchers, Section 4 Provides simula-
tion results for Baseline Prefetchers and some design space
exploration of its parameters. Section 5 identifies some first
order structures and analysis over different hardware budgets,
Section 6 is conclusion followed by Section 7 which contains
the Code and Scripts involved in running these simulations

2 Literature
2.1 D _JOLT

D-JOLT predictor [1] is a return address stack based prefetcher.
The return address stack is used to predict the return address

of the next set of instructions. During the learning phase it

generates a signature based on the Hash of Return Addresses

in the Stack and associate with corresponding cache miss

that was observed. It is based on a RDIP prefetcher with the

only difference being, the Stack of Return Addresses uses all

addresses instead of evicting them along with a counter to

distinguish the signature, this helps in adding some correla-
tion between previous function calls. D-Jolt uses a total of 3

prefetchers, each with its own unique property to compensate

for the accuracy/ timeliness drops of other prefetchers. The

long and short prefetchers use tables to record signatures

and miss addresses. Fallback prefetcher is a stream based

prefetcher [5].

2.2 FNL+MMA Prefetcher

FNL-MMA Prefetcher [2] uses a combination of two prefetch-
ers. The FNL prefetcher is based on the idea that all next lines

should not be prefetched, as it causes a lot of L2 accesses
and over-pollution. Instead only meaningful and reasonable
to be used lines should be prefetched. By associating the
current miss with previous misses and a 2bit counter, the
next N blocks are fetched. The corresponding next miss need
not prefetch again and uses a filter mechanism to reduce
prefetches. The MMA prefetcher prefetches non-contiguous
lines and tries to foresee several blocks ahead in what in-
struction blocks are likely to be missed based on the current
misses. By associating confidence with effect of one miss on
another, it can look ahead into misses.

2.3 Temporal Ancestary Prefetcher

This prefetcher is developed on the concept that a lot of cache
blocks are not frequently used and are termed as dead if it will
not be referenced again before eviction. The TAP prefetcher
uses this to the advantage to prefetch the next set of blocks
that can be replaced before the data is actually evicted and
replaced. It consists of an ancestary table that tracks what
addresses were seen on accessing current PC. Depending on
which address is accessed a counter bit is incremented. The
prefetcher works alongside next-line so as to reap benefit
of next prefetching as well as faster replacement instead of
relying on demand accesses. On a cache access the ancestary
table entry is read and its prefetches are requested depending
on counter. To compress the data few significant bits of Tags
are stored in a shadow cache for faster and parallel access

3 Meta Data
3.1 D _JOLT

3.1.1 Meta Data - The D_JOLT prefetcher uses 3 prefetch-
ers. The long range prefetcher has a signature queue con-
sisting 15 deep 23-bit wide entries. The signature Generator
consists of a 7deep 32-bit wide FiFo and a 32-bit Counter.
The miss table consists of 2048 set, 4way associative deep
76-bit(Tag, LRU, miss vector) wide entries. The short range
prefetcher has a signature queue consisting 4 deep 23-bit
wide entries. The signature Generator consists of a 4 deep
32-bit wide FiFo and a 32-bit Counter. The miss table con-
sists of 1024 set, 4way associative deep 77-bit (Tag, LRU,
miss vector) wide entries. The fallback prefetcher uses 16
deep 65-bit wide (Tag, replacement, address) entries Train
table and 16 deep 63-bit (Tag, replacement, address) wide
entry Monitor Table. There is a upper bit table consisting of
31 entries and 41 bit wide (Tag, Valid). There is a miss table
of 256 set, 4 way 79 -bit wide (Tag, LRU, miss vector). All
totalling to 125KBytes

3.1.2 Key Design - The key design of the prefetcher is
the signature generator, the miss tables and the signature
queue. The fifo stores return addresses from the stack and



implements a counter that counts number of returns to asso-
ciate a unique signature instead of limited signature.. Long
range prefetcher has 7 deep FIFO and short range has 4 deep.
The signature queue implements the distance parameter. By
adding the signatures in a queue of N-Deep, the prefetcher
associates a miss address on popping a signature from queue,
which would be N-deep in the past. Miss table associates
signature with Miss address. Upper bit table is added as a
fully associative cache to reduce size of normal miss table.

3.2 FNL+MMA

3.2.1 Meta Data There are several key components. I-
shadow cache with 192 entry 17-bit wide Table that is similar
to a Icache used to trigger prefetch. It uses a 64K entry 1-bit
Touched and 2-bit WorthPF Tables. These are used to predict
which blocks to fetch. FNL prefetcher uses a 128 entry 17
bit FNL filter to skip requesting already present blocks in
prefetch buffer. MMA prefetcher uses an 8K entry Miss table
which is 71 bit wide (tag, block-address, control bits) and a
24 entry 58bit wide MMA filter. Total hardware budget lies
around 96KBytes. And FNL filter reset interval of 8K. The
FNL Prefetcher uses a distance of 5 blocks and MMA uses a
distance of 9 blocks. There is a slight difference in the paper
submitted to the conference vs the actual code used. The IPC
speedup achieved with Old parameters (9 distance and 16
entry MMA filter) is 1.28745 whereas with the updated code
(11 MMA distance and 24 filter) is 1.292. We will refer the
FNL+MMA in this paper as the Prefetcher with the updated
parameters

3.2.2 Key Design - The touched Entry table is a 1bit counter
of recently touched block flag along with a counter to indicate
its demand access in a dedicated fix interval. The Touched En-
try is set when a miss occurs, and the corresponding counter
of previous Block is set to 3, to indicate that a miss on B
causes miss on B’ . By changing the confidence counter of
miss intervals, it correlates when to prefetch and when not
to. Next time when a Block Miss occurs, depending on the
Counter, next 5 blocks are prefetched. The Miss interval
dictates the time to refresh flags and clear Recentness, to
only fetch meaningful data. The MMA Prefetch Table asso-
ciates the miss address with predicted address using a Cache
like table of Tags and Block Address. The MMA prefetcher
prefetches 9 blocks in advance since we need to prefetch
blocks well in advance. This is slightly different from a Next
predicted Miss prefetcher as it can look N blocks ahead of
potential miss.

4 Simulation Methodology

The simulations are run using the Prefetching Champi-
onship Infrastructure present at [4]. Traces are the same as
run for the championship. While some traces are hidden, in
this paper we only check with the traces that are publicly
available. There are total 50 available traces which are a
mix of 35 Server, 8 Client and 7 SPEC Benchmarks. The
prefetchers are warmed up for SOM instructions and then run
for 50M instructions. Results are then populated as seen in
the graphs. Initially for Baseline Model without the Instruc-
tion prefetcher all 50 traces are run and simulated. Same is
done with Prefetchers D_JOLT and FNL with their Baseline
to reproduce the result.
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Figure 1: IPC Speedup with varying entries of DJOLT
Fallback Prefetcher

The IPC Speedup attained from D_JOLT Prefetcher over
Baseline is 1.2894, and MPKI reduction is 93.62%. The IPC
Speedup attained from FNL+MMA Prefetcher is 1.2924 as
apposed to 1.287 in paper (owing to updated code) and MPKI
to be 90.93% as opposed to 91.8% in the paper. Comparing to
the original Result in Paper, the error margin in IPC is 0.42%.
Following sections describe the Design Space Exploration of
the Prefetcher Structures and are simulated with all 50 traces
to get accurate results.

5 Design Space Exploration
5.1 D_JOLT

The Parameter chosen for Design space exploration are Fall-
back Prefetcher Entries, Distance of Long Prefetcher and
Distance of Short Prefetcher. Fallback prefetcher is impor-
tant and gives confidence into either of the prefetchers as
well as prefetch when none of the other prefetchers are fully
trained and hence is one of the good parameter to check.
Short and Long prefetchers are wide enough already and
have associativity enough to handle conflict/capacity misses.
So their efficiency is more determined by the distance they
look ahead to fetch the blocks.

5.1.1 Varying Entries of DJOLT Fallback Prefetcher -
In this exploration, we vary the Size of the Fallback prefetcher
Training and Monitor Tables and see that Baseline of 16 en-
tries gives the minimum IPC speedup as seen in Figure 1. The
ideal trend is to have optimal performance at 16 entries and
decreases on either sides of the Baseline. Shorter Entries lead
to more conflicts and more entries are not that meaningful
since the Prefetchers are warmed up with enough instructions.
The trend of decrease from 8§ to 16 can be attributed to the fact
that x264 and perlbench Workload suffers more than other
workloads from higher than 8 entries, this is due to the fact
that both short and long prefetcher are supplemented with
inverse support from Fallback prefetcher due to higher entries
being present and less optimal entries that can give closer
prediction.

5.1.2 Varying Distance of DJOLT Long Prefetcher -
The trend expected in this exploration is to have an opti-



%MPKI Reduction vs Fallback Pref Size
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Figure 2: % MPKI reduction with varying entries for
DJOLT Fallback Prefetcher
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Figure 3: IPC Speedup with changing Distance for
DJOLT Long Prefetcher

mal result at Baseline and lesser MPKI reduction (Fig 4)/
IPC improvement ( 3) as we increase the distance as farther
fetches may be more probable to be wrong. However the
IPC dip is huge in case of 25 distance ahead. This is seen
in server workloads as increasing distance results in sub-
optimal prefetch, whereas some smaller applications like Go
are achieving higher improvement at very large distances due
to converging of execution path for bigger procedural blocks.
MPKI reduction trend looks as expected. WIth higher Dis-
tance, the prefetches are redundant and cause more conflicts
in the cache with contention to L2 accesses.

5.1.3 Varying Distance of DJOLT Short Prefetcher -
The trend expected in this exploration is to have an optimal
result at Baseline and lesser MPKI reduction (Fig 6)/ IPC im-
provement ( 5) as we increase the distance as farther fetches
conflicts with Fetches of Long distance prefetcher and since
we have lesser prefetches of immediate blocks. Very close
blocks will take time before they can actually be utilised and
hence 4 as baseline distance seems a feasible breakpoint
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Figure 4: % MPKI reduction with varying distance for
DJOLT Long prefetcher
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Figure 5: IPC Speedup with changing Distance for
DJOLT Short prefetcher
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Figure 6: %MPKI reduction with varying Distance for
DJOLT short Prefetcher



%MPKI reduction vs FNL reset interval
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Figure 7: MPKI reduction with changing Reset Counter
for FNL Prefetcher

5.2 FNL+MMA

Of the Parameters within the FNL and MMA filter, the ones
that seemed more important were the Reset Interval, MMA
Distance and the MMA Filter. The reset interval of FNL
determines how crucial is the information and how relevant is
the confidence information over certain period of time. MMA
prefetcher is what gives FNL prefetcher an additional boost
in prefetching by guessing farther misses, hence the blocks
can prefetch without being replaced before usage is a good
metric of its performance. Similarly if MMA keeps fetching
blocks, it can saturate L2 bandwidth and leave no room for
demand access hence the number of filter entries can help to
reduce L2 accesses.

5.2.1 Varying Reset interval of FNL Prefetcher - The
expected trend is that with Higher Reset intervals there should
increase and thereafter show minimal or low improvements as
the confidence in correlation may be stale. As it is expected,
the MPKI reduction (Figure 8) reduces as the reset interval is
increased. Similar is with IPC improvement (Figure 7) and
it becomes saturated with higher interval as the prefetches
being requested aren’t meaningful. There is practically no
returns. However the interval used in the paper is 8K whereas
the sub optimal interval from simulations seem that it should
have been 4K. This is confirmed by running through all traces

5.2.2 Varying Distance of MMA Prefetcher - MMA is
creating requests of farther misses in advance, but the expec-
tation is to have diminishing or inverse returns with farther
block prefetch as it is likely to be replaced by blocks from
FNL or they are simply not useful. This is similar to the
MPKI reduction in Figure 10 and IPC improvement in Fig-
ure 9. However there is a sharp decrease in distance of 15
blocks ahead, this might be possible due to procedure blocks
being typically sized between 10-18 blocks and that lot of
requests are falling within the range of Procedure instruction
boundaries and encountering Branches/Returns.

5.2.3 Varying Filter Number of MMA Prefetcher - By
varying the Filter size but keeping the Distance of Prefetcher
constant, the speedup and MPKI should increase till opti-
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Figure 8: IPC Speedup with changing Reset Counter for
FNL Prefetcher
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Figure 9: % MPKI reduction with changing MMA Dis-
tance for FNL5+MMA Prefetcher
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Figure 10: IPC Speedup with changing MMA Filters for
FNL5+MMA Prefetcher
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Figure 11: TPC Speedup with varying Distance for MMA
Prefetcher in FNL+MMA Prefetcher
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Figure 12: % MPKI reduction with varying Filter number
for MMA Prefetcher in FNL+MMA Prefetcher

mum setting and decrease beyond an optimal setting. The
IPC speed up figure 11 and MPKI reduction in Figure 12
seems to be otherwise from sharp decline at 20 Filter size and
marginally improving with higher distances. This can again
be validated by previous statement that procedural blocks are
typically 10-18 blocks in length and higher blocks lead to
wasteful prefetches around the boundary, more prefetches
than the block length of 18 actually benefits as some addi-
tional prefetches beyond the mispredicted ones have been
requested and will benefit when used. Meaning only certain
blocks from the filter would need to be invalidated on mispre-
diction that are near the boundary, anything before and after
that seem to be useful.

6 Dealing with Hardware Budget

IPC Championship stipulates a budget of 128KBytes. How-
ever here we have simulated the performance of the Prefetch-
ers at smaller and larger hardware budgets and see perfor-
mance. Ideal expectation is to have increasing performance
beyond the current limit upto a optimal value and then satu-
rating or diminishing returns.
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Figure 13: IPC Speedup with changing Hardware Budget
for D_JOLT Prefetcher

6.1 D_JOLT

D_JOLT prefetchers has multiple Tables which are the first-
order structures in the design, like the Long Prefetcher miss
table, Short prefetcher miss table and Extra miss table. The
current hardware cost is 125KB, and tables were reduced/in-
creased in multiples of 2 to simulate as shown in Figure 13
and 14. One thing to note for lower size tables is signature
bits had to be reduced to fit within the index. Signature bits
used for 64kB budget is 22 and for 32kB budget is 21. Only
table entries are updated but not the Tag and associativity, so
as to not loose information for lookup. The configuration for
each sizes are as follows:

e 32 KB Budget- 64 Fallback (2.5kB), 256 Short(10KB),
512 Long Prefetcher Sets(19KB). Actual utilization -
31.5kB

e 64 KB Budget- 128 Fallback(5KB), 512 Short(19KB),
1024 Long Prefetcher Sets(38KB). Actual utilization -
62kB

e 128 KB Budget- 256 Fallback(10KB), 1024 Short(36KB),
2048 Long Prefetcher Sets(76KB). Actual utilization -
122kB

e 256 KB Budget- 512 Fallback(20KB), 2048 Short(72KB),
4096 Long Prefetcher Sets(152KB). Actual utilization -
244kB

e 512 KB Budget- 1024 Fallback(40KB), 4096 Short(154KB),

8192 Long Prefetcher Sets(304KB). Actual utilization -
498KB

6.2 FNL+MMA Prefetcher

FNL prefetchers has 3 Tables which are the first-order struc-
tures in the design, the Touched and WorthPF Tables of FNL
and miss table of MMA. The current hardware cost is 96KB,
and tables were reduced/increased in multiples of 2 to sim-
ulate as shown in Figure 15 and 16. Only table entries are
updated but not the Tag/ associativity / Counter Width, so as
to not loose information for lookup. The configuration for
each sizes are as follows:



%MPKI reduction vs DJOLT hardware budget

%
94
92
)

88

%MPKI reduction

86
84

82

Quarter Half Baseline Double Quadruple

Hardware Budget

Figure 14: 9% MPKI reduction with varying hardware
budget for D_JOLT Prefetcher
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Figure 15: IPC Speedup with changing Hardware Budget
for FINL5+MMA9

e 32 KB Budget- 16K Touched and WorthPF Entries
(6KB), 2K Miss table (71bits - 18KB) - 24kB Actual

o 64 KB Budget- 32K Touched and WorthPF Entries(12KB),
4K Miss table (71bits - 36KB) - 48kB Actual

e 128 KB Budget- 64K Touched and WorthPF Entries(24KB),

8K Miss table (71bits - 71KB) - 96kB Actual

e 256 KB Budget- 128K Touched and WorthPF Entries(48KB),

16K Miss table (71bits - 142KB) - 190kB Actual

e 512 KB Budget- 256K Touched and WorthPF Entries
(96KB), 32K Miss table (71bits - 284KB) - 380kB
Actual

6.3 Analysis

6.3.1 Hardware Cost Comparison - It is evident from the
simulations that FNL+MMA prefetcher is under utilizing the
Hardware Budget while still making significant performance
improvement as compared to D_JOLT. The Budget utiliza-
tion at 512kB by scaling the first order structures is 75% for
FNL+MMA and 97% for D_JOLT. While MPKI reduction
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Figure 16: %MPKI reduction with varying hardware
budget for FNL5+MMAS9 Prefetcher

for FNL+MMA is slightly lesser than D_JOLT, FNL+MMA
results in higher accuracy in terms of IPC improvement and
shows signs for more improvement at higher budgets. Un-
der more constraints like Area cost, FNL+MMA is likely to
perform better. FNL+MMA performs better than D_JOLT at
lower budget due to the following : 1. FNL+MMA fetches
blocks farther in advance that are likely to be missed later. So
it associates single miss with prefetch of 2 blocks of differ-
ent distances. 2. D_JOLT correlates more information than
FNL+MMA but due to the usage of 3 prefetchers, the accu-
racy suffers where one of the Prefetcher is incorrect but has
more priority in deciding the prefetch request. 3. By using a
filtering mechanism, FNL+MMA reduces the prefetch blocks
that are requested and potential reduction in Prefetch buffer
occupancy, thereby helping with reducing conflict.

6.3.2 Timeliness - In terms of Timeliness, D_JOLT might
be better than FNL+MMA for 2 reasons. 1. The fully asso-
ciative search of the Elements in the FNL or MMA Filter can
take up multiple cycles, whereas the D_Jolt Prefetcher only
does a lookup of upto 4 ways in a set while accessing the
cache for block address 2. The MMA and FNL together can
look around 11-15 blocks in advance (depending on 5 blocks
that it can fetch), but the distance of the D_Jolt long prefetcher
itself is 15 and it can look ahead upto maybe 4blocks which
makes it timely in terms of supplying the block when it is
needed instead of being evicted. 3. The signature generator is
not on the critical path as it is stored in FiFO and the Popped
element is used to index the Tables. Same with FNL+MMA,
the computation of address is not on critical path.

7 Code
The code is available in repository : CSE240C-Winter2022
Steps to run are added in File called StepsToRun.txt

8 References

[1] https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/D-
JOLT.pdf

[2] https://research.ece.ncsu.edu/ipc/wp-
content/uploads/2020/05/FNLMMA -final.pdf


https://github.com/Shahmonil1996/CSE240C-Winter2022

[3] https://research.ece.ncsu.edu/ipc/wp-
content/uploads/2020/05/tap_final.pdf

[4] https://github.com/ChampSim/ChampSim

[5] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers,” in HPCA, 2007, pp. 63-74



HW2 Simulation Assignment Report for CSE240C UCSD
Winter 2022

Monil Shah A59012111

ABSTRACT

With increasing memory wall, it becomes crucial to im-
prove the Cache Hits. Memory Latency can be hidden through
multiple means. While we cannot have infinite size caches
to avoid conflict misses, we can improve upon cache replace-
meent policies to make sure conflicts are reduced. This results
in better utilization of memory bandwidth by not thrashing
the memory controller with accesses.This paper presents de-
sign analysis of two of the 3 Winner Prefetchers at the 3rd
Cache Replacement Championship based on the Simulator
ChampSim.

1 Introduction

With growing instruction-working set among neural net-
work, cloud and server applications, instruction foot print is
ever increasing and so are cache misses. To reduce cache
thrashing, one of the ideas is to prefetch necessary data,
whereas other is to have a better replacement policy. With bet-
ter replacement policies it is possible to predict which blocks
are likely to be reused later and evict entries that are less
likely to be reused later. This paper is organized as follows :
Section 2 provides high level summary of 3 winner prefetch-
ers at the 3rd Cache Replacement Championship, Section
3 lists important aspects of two of the Winner Prefetchers,
Section 4 Provides simulation results for Baseline Policies
and some design space exploration of its parameters. Section
5 identifies some first order structures and analysis over dif-
ferent hardware budgets, Section 6 is conclusion followed by
Section 7 which contains the Code and Scripts involved in
running these simulations

2 Literature
2.1 Expected Hit count Replacement

The paper tries to correlate reuse distance with expected
Hit count of a Block. Higher the remaining expected Hit
count, lesser the reuse distance. The idea needs a baseline
replacement policy to get the number of hits which is DRRIP
for them since it has low overhead giving more space to
implement their predictor. They remember the hit count
of the cache block for past 2 insertions. And the average
of it is used as EHC. The paper leverages to combine Tag
information on the basis of less unique tags in LLC based on
previous study to reduce their history storing overhead. The
history information consists of a 128 entry 16way table with
1 valid, 2 3-bit counters, an LRU recency bits and Tag bits.
The metadata and counters are updated on saturation of Hit
counters or eviction on non-saturated counter.. Depending
on if the Tag matches, a new line is issued or previous Count
is pushed ahead and next count is added back. The victim
is selected depending on the RRPV value for the block in

the cache, the EHC information and the current Hit counter
of the block. By Subtracting Current Hit counter and RRPV
value from EHC, the lowest value block is evicted. This is
based on the fact that RRPV highest was anyway supposed
to be removed and it making closer to zero value indicates
that the expected number of hits of that block is less. [3].

2.2 Hawkeye Replacement Policy

This paper is based on modifying the existing Hawkeye re-
placement policy. Earlier policy treats demand and prefetch
requests in same way, but the performance impact of both
will be different depending on the workload, so to optimally
decide on the replacement, the paper uses separate tables for
demand and prefetch requests. The paper tries to construct
Belady’s algorithm by associating Load instruction with be-
ing cache friendly or cache adverse. Friendly lines are given
higher priority to inert into the cache. By associating the
liveness of blocks in cache in the past with future access,
it determines what should be the occupancy of the blocks
in the future. The Hawkeye predictor identifies the lines to
be friendly or adverse depending on confidence counter. It
works in correlation with Optgen to strengthen the confidence
in previous PC if its prediction leads to hit in OptPolicy. De-
pending on friendliness the RRIP value (indication of eviction
, at a value of 7 ) is set to be 0 or 7. The paper trains the
OPTgen to consider only cases where Prefetch helps a later
demand access and ignores insertion for prefetches that will
not be associated with demand access. However it doesn’t
completely ignore the prefetches to avoid memory conges-
tion. The paper performs 4.5% IPC improvement over LRU
without data prefetches whereas 2.25% with prefetches on
single core [1]

2.3 Ship++ Replacement Policy

This paper is based on an earlier replacement policy called
ship. The idea of the paper is to associate reuse character-
istics of a cache line based on the signature of a line which
can be a characteristic of PC and other meta data. This is
done by choosing what RRPV value to be used on a cache
hit/miss and associating corresponding confidence counter
for signature. The paper tries to improve on the existing SHIP
policy by suggesting multiple enhancements. First enhance-
ment is to insert lines with RRPV =0 for high confidence
(saturating) reuse of lines. Second is to weigh cache hits
and misses similarly(update on first reference) and not have
overtraining. Third enhancement associates RRPV =3 (low
priority) to writeback lines, since they are more likely to be
evicted from here as well. Fourth is to use different signature
for demand and prefetch requests and thus reduce interfer-
ence. Fifth is the update criteria of prefetch requests if they
are followed by prefetch or demand (less priority). Based



on these enhancements the paper is able to achieve a 6.2%
improvement in IPC over LRU for single core configuration
without prefetcher and 4.8% with prefetcher [2].

3 Meta Data
3.1 Hawkeye

3.1.1 Meta Data There are several components of the re-
placement policy:

e Predictors - 2 different predictors each with 2K entries
of 5 bit counter each to identify cache adverse and cache
friendly lines taking 2.56KB space

e Sampler - It is a structure that is used to reduce the
information required to construct OPT’s behavior, this
is a 2800 entry 4-byte wide table taking 11.2 KB space

e Occupancy Vector - This tracks the liveliness interval
that overlap and hence identify the cache occupancy.
This is a 128 entry 4-bit vector and each entry has 64
such vectors amounting to 4KB

e RRIP value per line which is a 3 bit per line of LLC
taking 12KB space

o Information to identify Sampled sets which is a 64 set
16 way structure with 12 bits of information taking
1.5KB space .

3.1.2 Key Design - The most important policy of the paper
are as follows :

o Identifying cache friendly and cache adverse entries by
associating the behavior of OPTgen with the confidence
counter. This allows to insert lines with an RRIP of 0
or 7 which will dictate how fast can they be evicted

e The second important aspect of the paper is to asso-
ciate entries in the OPTgen for prefetch entries if they
are followed by demand accesses. This is to associate
less allocation of useless cache lines and make space
for useful entries. However paper doesn’t completely
ignore redundant prefetches so as to avoid congestion.

3.2 Ship++

3.2.1 Meta Data - Over a baseline LRU consists of the
following :

e Per line metadata in the LLC. This is 2 bits for the
RRPV value and 1 bit to indicate if the line was added
due to prefetch or not . The overhead of RRPV is 8KB

e Signature History Counter Table - This is a 16K entry
3bit counter that measures confidence of reuse amount-
ing to 6KB for a core and 24KB for 4 cores

e Sampled Set for signature - This is a 64 set 16 way
structure(1K entries) of 15-17 bits (14 - signature , 1-
Reuse, 2- Only for multicore system) that tracks Reuse
History of a signature. This is in total 1.875-2.125KB

e Storage to identify Sampled Set - This is a 64 En-
try2byte wide table that identifies signatures for sam-
pled set Table insertion. This is merely 128 Bytes in
size.

3.2.2 Key Design - The most important policies of the Re-
placement policy are as follows :

o Insertion of lines with RRPV = 0 for saturated counter
value. This is one of the key design ideas since the
RRPV of 2 and 3 are inserted depending on the Con-
fidence Counter. Giving a value of 0 keeps the block
for farther time in the line thereby favouring the reuse
characteristic

e The second is to bifurcate the re-reference behavior of
demand accesses vs prefetcher accesses. With this it as-
sociates different confidence value for each access and
leads to less interference between them, which is cru-
cial in workloads that rely heavily on either prefetches
or demand accesses only

e Writing Writebacks with RRPV of 3, this allows to pri-
oritize Writeback evictions since the RRPV is already
3 and can safely be written into memory as they are not
likely to be reused.

4 Simulation Methodology

The replacement policy is evaluated on the 3rd Cache
Replacement Championship Infrastructure present at [4].
Traces are the same as ones run for the championship. In
this paper we only check with the traces that are publicly
available. There are total 200 available traces. However to
reduce the runtime, 51 traces were selected from the pool
of 200 traces based on their MPKI. Traces with significant
MPKI was chosen by choosing a threshold MPKI. The poli-
cies are warmed up for 5S0M instructions and then run for
100M instructions for Hawkeye instead of 250M to speed
up simulations /citehawkeye, warmup instruction count for
Ship is 10M and 100M for running as mentioned in paper
[2]. Results are then populated as seen in the graphs. We
compare the performance of new replacement policies with
Baseline LRU replacement policy. The IPC variation over all
51 workloads for the baseline of LRU, Hawkeye and Ship++
is represented in 1

The IPC Speedup attained from Hawkeye over Baseline is
1.029 as apposed to 1.0209 which is a margin of 0.7%, and
MPKI reduction is 9.971%. The IPC Speedup attained from
Ship++ is 1.02882 as apposed to 1.046 which is a margin of
4.4% and MPKI is found to be 8.506% .

S Design Space Exploration
5.1 Hawkeye

The Parameter chosen for Design space exploration are the
ways and number of sets from Sampler, and the occupancy
vector size. Varying the associativity and number of sets is
important to give a large range of the history information that
can be stored without making false judgement. This is done
without changing the size of the Sampler so as to not give
unfair advantage of its usage. Occupancy vector size seems
to be a second good choice for the exploration as it tracks
what blocks have lived in a given cache block. Depending on
what blocks are likely to remain more in this block, it gives a
confidence to keep them and evict other entries.



IPC vs Traces

Figure 1: IPC of individual traces compared with LRU,
Hawkeye and Ship Baseline versions
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Figure 2: MPKI reduction with changing Hawkeye Sam-
ple Set size

5.1.1 Varying associativity and sets of Sampler - In this
exploration, we keep the size of Sampler to be same and
vary the number of Sets and was to find an optimal setting
where he replacement policy benefits. The Improvement
can be seen in Figure 2 and 3. There are only 3 points of
exploration here. The result for 1way has been omitted since
it results into huge MPKI increase, which can be reasoned
by the sampler having more conflicts in the cache then the
it can benefit from the increased size. The ideal trend is to
see the Baseline - 2800 Set and 8way associativity to have
the best reduction in MPKI and IPC improvement. However
it is seen at the 5600 set, 4way associative structure. This
suggests that there are sufficient number of blocks that need
to be identified but no more than 4 need to be accommodated
in a block. having a 8 way structure limits the unique entries
in 2 different sets which gives a wrong curve here. ANother
possible reason is we have simulated the results for only 51
high MPKI traces, whereas paper has simulated for over 200
benchmarks as from the championship infrastructure. It is
possible that the improvement from lower MPKI loads is
significant and offsets the gains from a 4-way structure more
than 8 way structure. If that is not the case, having a 4way
structure seems more optimal at the same budget.

5.1.2 Varying occupancy vector size - Occupancy vec-
tor stores the access history of the cache over N number of
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Figure 3: IPC Speedup with changing Hawkeye Sample
set size
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Figure 4: MPKI reduction with changing Hawkeye occu-
pancy vector size

blocks. It consists of 2 parts, one stores address and other
stores sequence of occupancy. That gives a baseline of 128
entries, 64 for address and 64 for sequence. The ideal trend
is to have optimal performance at baseline and increases
from lower sides of the Baseline, but either saturates or very
marginally increases beyond baseline. However the trend
shows otherwise here as seen in Figure 4 and 5. The trend
shows 64 entries to be performing better than 80 or 100 or
140 entries. This can be attributed to the fact that beyond 32
instances of sequence, the occupancy vector does not store
any meaningful access history of blocks and it only leads
to corruption of further predictions with higher history. A
suboptimal configuration would have been 64 entries, but this
isn’t the case because we are only simulating the prefetcher
configuration which works in conjunction with replacement
policy. If we have additional results from single core system
without prefetching and with higher number of workloads,
we might get baseline to be at correct configuration.

5.2  Ship++

The Parameter chosen for Design space exploration are the
max RRPV values and the number of Sampled sets. These are
the two main parameters that can be varied without leading
to huge change in the hardware budget. The second reason
to choose such parameters is as follows. Having very lit-
tle difference between maxRRPV value and 0 would evict
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Figure 5: IPC Speedup with changing Hawkeye Occu-
pancy vector size

even higher confidence entries faster, whereas more granular
RRPV will place higher confidence sets for more interval in
the cache. Since the replacement policy can’t add meta data
for each line in the LLC cache, it needs to sample certain
number of sets and find high confidence entries among it,
which makes it the second likely candidate for Design space
exploration.

5.2.1 Varying maxRRPV value - In this exploration, we
vary the maxRRPV value from 2 to 6, while for RRPV 4,5,6
the RRPV bitsize increases, the budget added due to that is
still within the permissible limit of the championship. The
trend is shown in Figure 6 and 7. The trend to expect would
be good improvement at RRPV of 3/4 and then marginal
improvements with higher RRPV. While this is seen in MPKI
reduction, the IPC speedup shows otherwise with a dip. Care-
fully analyzing the dip shows the order of change between
IPC improvement is in order of 0.01. While this graph seems
a major dip, it is otherwise, nevertheless it makes sense to
analyse what can be causing this if the MPKI is reducing.
Higher MPKI reduction is seen in Traces WRE, ZEUSMP.
These workloads are benefiting in reducing the misses but
they still don’t improve the IPC by a similar factor. This
can be attributed to the fact that prefetches are helping these
workloads at the L1 and L2 level resulting in lesser LLC
misses, but the simulator is not accounting for the congestion
for these workloads at the Memory controller level and gives
the same latency to each access. And since Misses are av-
eraged, certain high Miss regions might overshadow entire
MPKI calculation and give false representation of where the
misses are occuring and hence not give proper congestion
idea.

5.2.2 Varying Sample set size - The number of sets being
sampled are important as they contain the signature bits that
will be used to index into the signature history Table. If we
have lesser number of entries then we would not be able to
reap full benefit of the Table size. Hence the ideal trend
would be to expect increasing speedup and then saturating

post optimal point. This can be seen in figure 8 and 9.

IPC somehow gives a slightly correct trend barring the dip,
the dip can be attributed to the fact that the Signature hash
function might be related to a function that favours power of
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Figure 6: % MPKI reduction with varying max RRPV
for SHIP policy
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2 for proper accesses to have Bank interleaving. And already
higher than 64 entries already reap the benefits of larger
sampler size and doesn’t result into mis-representation of
signature accesses. The same can be attributed to the dips on
48 dip on the MPKI trend. The MPKI trend beyond 64 looks
interesting. While it should have been stagnant /saturating,
it seems decreasing. This might be due to the fact that The
signature function may not be fully tuned for entries higher
than 64 baseline and hence results into one to many mapping
of signature to entry in the table, where the indexing is done
on a first search basis. Consider the case that one signature is
generated at Index I and second signature is generated at 12.
With the way the signature gets generated, I2 might have been
placed higher into the Table and may lead to false updates
from next access onwards, whereas the actual update would
have been done at Index I1 if I2 weren’t present

6 Dealing with Hardware Budget

CRC stipulates a budget of 32KBytes of metadata per core.
Here we have simulated the performance of the replacement
policies at smaller and larger hardware budgets . Ideal expec-
tation is to have increasing performance beyond the current
limit upto a optimal value and then saturating or diminishing
returns. Here we report only MPKI as the metric and ignore
the IPC. Average MPKI is the number of Misses which the
replacement policy is changing with respect to Baseline re-
placement policy. Secondly since this is not a cycle accurate
simulator that tests the actual traffic, the IPC improvements
may not give accurate results. However MPKI is still a good
metric, because LLC is supposed to benefit less misses.

6.1 Hawkeye

MPKI improvements from first-order structures in the hawk-
eye replacement policy are seen in 10, the size of structures
are stipulated from Quarter the budget all the way to Quadru-
ple budget, in multiples of 2. For each configuration, the pa-
rameters that are varied are - Sampler entries and the RRPV
information per line and the predictor size. One thing to
note is, when we increase the predictor size, it automatically
updates the signature length as well. The description of each
hardware component and its estimated size and hardware uti-
lization of budget is shown below. However the trend shows

MPKI reduction vs Hardware Budget
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Figure 10: %MPKI reduction with varying hardware
budget for Hawkeye

a reverse trend, indicating that with increasing the RRPV
information, it takes longer time to train the confidence of
classifying entries as cache friendly or Cache adverse in case
of Hawkeye.

o 8 KB Budget- Sampler 700 entries - 2.8KB, predictors
- 2 512 entry - 5bit counter tables (0.58KB) , 4-bit 32
entry 64 set Occupancy vector (1KB), RRPV - 1bit 32K
entry(3KB) and Sample set 64set 16way 10bit per line
(0.5KB). Actual utilization - 7.82KB

e 16 KB Budget- Sampler 1400 entries - 5.6KB, predic-
tors - 2 1K entry - 5bit counter tables (2.56KB) , 4-bit
128 entry 64 set Occupancy vector (4KB), RRPV - 2bit
32K entry(6KB) and Sample set - 64set 16way 11bit
per line (1KB). Actual utilization - 18.8KB

e 32 KB Budget- Sampler 2800 entries - 11.2KB, predic-
tors - 2 2K entry - 5bit counter tables (2.56KB) , 4-bit
128 entry 64 set Occupancy vector (4KB), RRPV - 3bit
32K entry(12KB) and Sample set - 64set 16way 12bit
per line (1.5KB). Actual utilization - 31.8KB

e 64 KB Budget- Sampler 5600 entries - 22.4KB, predic-
tors - 2 4K entry - 5bit counter tables (5.32KB) , 4-bit
128 entry 64 set Occupancy vector (4KB), RRPV - 4bit
32K entry(24KB) and Sample set - 64set 16way 13bit
per line (3KB). Actual utilization - 58.7KB

e 128 KB Budget- Sampler 11200 entries - 44.8KB, pre-
dictors - 2 8K entry - 5bit counter tables (10.64KB) ,
4-bit 128 entry 64 set Occupancy vector (4KB), RRPV
- 3bit 32K entry(48KB) and Sample set - 64set 16way
14bit per line (6KB). Actual utilization - 113.44KB

6.2 Ship++

MPKI reduction for Ship++ is shown in 11, this trend looks
more realistic and shows that with increasing hardware bud-
get the advantage is minimal. The size of structures are
stipulated from Quarter the budget all the way to Quadruple
budget, in multiples of 2. The parameter changes here is
the RRPV bit width per line and Signature History Counter
Table size. While it can be seen from the below hardware,



e Overhead of the above replacement Policy metadata
with respect to LLC size is 0.97%(Ship++) and 1.56%(Hawk-

eye)

%MPKI Reduction vs Hardware Budget
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o Instruction prefetchers simulated in prior work were
96KBytes (FNL+MMA) and 125KBytes (D_JOLT) .
The corresponding area overhead in comparison to L11
cache size is 300%(FNL+MMA) and 400%(D_JOLT)
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6.3.2 Latency comparison - Instruction prefetchers are
front end processors and need to work in advance than other
units like Branch Predictor as well as Fetch Engine, hence
they have to be computationally less expensive as they can
not tolerate more access time, however they can tolerate more
size for meta-data as the corresponding structures for which
they are designed are relatively small. On the other hand,
LLC sizes are quite big but their replacement policies can
tolerate higher latencies as they are backend processes. Some
of the reasons for computational latency in LLC structures vs

Figure 11: %MPKI reduction with varying Budget for
Ship

the budget utilization of Ship++ is quite less and there can be
more room for improvement. However, since its first order
size don’t linearly vary but rather vary exponentially, the pa-

rameter for optimal setting might need more tweaking. The
trend is almost similar for each configuration, which means
that most of the additional information by adding more num-
ber of Signature history is not required as it might already
be enough around the optimal hardware budget. Secondly
the signature function may not be fully optimal for higher
budgets as described earlier and hence the graph shows a
stagnant improvement after the baseline budget.

o 8KB budget - 2bit metadata per line - 6KB, 4K entry
3 bit counter - 1.5KB, Sample Set -64set - 1.875KB,
Sample Set ID - 64 Entry - 128Bytes - 9.5KB Actual
Utilization

e 16KB budget - 2bit metadata per line - 6KB, 8K entry
3 bit counter - 3KB, Sample Set -64set - 1.875KB,
Sample Set ID - 64 Entry - 128Bytes - 11KB Actual
Utilization

e 32KB budget - 3bit metadata per line - 12KB, 16K
entry 3 bit counter - 6KB, Sample Set -64set - 1.875KB,
Sample Set ID - 64 Entry - 128Bytes - 20KB Actual
Utilization

e 64KB budget - 4bit metadata per line - 24KB, 32K entry
3 bit counter - 12KB, Sample Set -64set - 1.875KB,
Sample Set ID - 64 Entry - 128Bytes - 38KB Actual
Utilization

o 128KB budget - Sbit metadata per line - 48KB, 64K en-
try 3 bit counter - 24KB, Sample Set -64set - 1.875KB,
Sample Set ID - 64 Entry - 128Bytes - 74KB Actual
Utilization

6.3 Analysis against prefetcher
6.3.1 Hardware Cost Comparison

o L1I-Cache size for Instruction Prefetching championship
was 32KBytes whereas LLC size for Cache Replace-
ment Policy is 2MB per core and 8MB for multi-core
system

e For the chosen Replacement Policies, the hardware
budget utilization ranges from 20KBytes (Ship++) to
31.8KBytes (Hawkeye).

Instruction prefetchers can be as follows:

7

8

(1]
(2]
(3]

(4]

e The associativity of structures like Occupancy Vector
or Sample Set are higher than 16, somewhere even upto
64. Such highly associative structures take more time
to access for comparison between different ways of a
set. This can be one latency hungry computation. LLC
cache lines typically being higher in size as well as
ways require bigger comparators as well as cascaded
muxes to resolve Hits.

e The LLC structures itself are huge and can take more
time to access, plus they are dependent on demand
misses and response from memory, whereas prefetchers
are lightweight and run with minimal interaction from
Branch predictors only to flush entries on mispredic-
tions.

e Most of the replacement policies check for RRPV val-
ues, if RRPV of a cache line is not close to the max
value it keeps on reiterating and adding the RRPV to
find the first highest possible value which can incur
latency in finding such RRPV.

Code
The code is available in repository : CSE240C HW2
Steps to run are added in File called StepsToRun.txt
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ABSTRACT

With increasing memory wall, it becomes crucial to im-
prove the Cache Hits. Memory Latency can be hidden through
multiple means. While we cannot have infinite size caches
to avoid conflict misses, we can improve upon cache replace-
ment policies to make sure conflicts are reduced. This results
in better utilization of memory bandwidth by not thrashing
the memory controller with accesses.Out-of-Order execution
is another such paradigm however it would still reach a bot-
tleneck in fetching new set Instructions. Prefetchers alleviate
this problem by bringing the likely to be used Instruction/-
Data Blocks before it is actually used. This paper presents an
adaptive policy that choses between two replacement policies
from the 3rd Cache Replacement Championship Participants
and discussion about two Winner Prefetchers at the 1st In-
struction Prefetching Championship based on the Simulator
ChampSim.

1 Introduction

With growing instruction-working set among neural net-
work, cloud and server applications, instruction foot print is
ever increasing and so are cache misses. Instruction prefetch-
ers effectively hide cache miss latency by prefetching the
blocks speculatively. This is done in separate buffers so as to
not affect the normal cache operation through cache pollution
or conflict misses. If the data isn’t used there is no additional
penalty in comparison to not using prefetchers.To reduce
cache thrashing, one of the ideas is to prefetch necessary data,
whereas other is to have a better replacement policy. With
better replacement policies it is possible to predict which
blocks are likely to be reused later and evict entries that are
less likely to be reused later. This paper is organized as fol-
lows : Section XXX provides high level summary of 2 winner
prefetchers at the 1st Instruction Prefetching Championship
and 2 winner replacement policies at 3rd Cache Replacement
Championship, Section XXX lists the motivation of this study
behind combining cache replacement policies, Section XXX
Provides simulation results for Baseline Policies and winner
policies. Section XXX introduces architecture of the adaptive
replacement policy, Section XXX is conclusion followed by
Section 7 which contains the Code and Scripts involved in
running these simulations

2 Literature
Here we present the replacement policies and the instruc-
tion prefetchers that we compare against.

2.1 LRU Replacement Policy

LRU is a standard cache replacement policy that keeps track
of cache lines that were used farthest in past than other cache
lines, and aims to remove them assuming they are not likely

to be re-referenced in the future. LRU inserts a line at Most
Recently used position and it takes the cache line to go from
all the way from MRU to LRU position to be evicted. The
data structure can be considered as a double linked list, where
on every hit the cache line is brought closer to the Head of
MRU side and the least recently used is placed at the farther
side. The problem with such a scheme is the number of bits
required to represent the LRU structure is n! where n is the
number of ways of a set, which grows quite fast. There are
other variants of LRU like psuedo LRU, tree LRU that use
less number of bits to represent the structure.

2.2 Hawkeye++ Replacement Policy

This paper is based on modifying the existing Hawkeye re-
placement policy. Earlier policy treats demand and prefetch
requests in same way, but the performance impact of both
will be different depending on the workload, so to optimally
decide on the replacement, the paper uses separate tables for
demand and prefetch requests. The paper tries to construct
Belady’s algorithm by associating Load instruction with be-
ing cache friendly or cache adverse. Friendly lines are given
higher priority to inert into the cache. By associating the
liveness of blocks in cache in the past with future access,
it determines what should be the occupancy of the blocks
in the future. The Hawkeye predictor identifies the lines to
be friendly or adverse depending on confidence counter. It
works in correlation with Optgen to strengthen the confidence
in previous PC if its prediction leads to hit in OptPolicy. De-
pending on friendliness the RRIP value (indication of eviction
, at a value of 7 ) is set to be 0 or 7. The paper trains the
OPTgen to consider only cases where Prefetch helps a later
demand access and ignores insertion for prefetches that will
not be associated with demand access. However it doesn’t
completely ignore the prefetches to avoid memory conges-
tion. The paper performs 4.5% IPC improvement over LRU
without data prefetches whereas 2.25% with prefetches on
single core [1]

2.2.1 Meta Data There are several components of the re-
placement policy:

e Predictors - 2 different predictors each with 2K entries
of 5 bit counter each to identify cache adverse and cache
friendly lines taking 2.56KB space

e Sampler - It is a structure that is used to reduce the
information required to construct OPT’s behavior, this
is a 2800 entry 4-byte wide table taking 11.2 KB space

e Occupancy Vector - This tracks the liveliness interval
that overlap and hence identify the cache occupancy.
This is a 128 entry 4-bit vector and each entry has 64
such vectors amounting to 4KB



e RRIP value per line which is a 3 bit per line of LLC
taking 12KB space

o Information to identify Sampled sets which is a 64 set
16 way structure with 12 bits of information taking
1.5KB space .

2.2.2 Key Design - The most important policy of the paper
are as follows :

o Identifying cache friendly and cache adverse entries by
associating the behavior of OPTgen with the confidence
counter. This allows to insert lines with an RRIP of 0
or 7 which will dictate how fast can they be evicted

e The second important aspect of the paper is to asso-
ciate entries in the OPTgen for prefetch entries if they
are followed by demand accesses. This is to associate
less allocation of useless cache lines and make space
for useful entries. However paper doesn’t completely
ignore redundant prefetches so as to avoid congestion.

2.3 Ship++ Replacement Policy

This paper is based on an earlier replacement policy called
ship. The idea of the paper is to associate reuse character-
istics of a cache line based on the signature of a line which
can be a characteristic of PC and other meta data. This is
done by choosing what RRPV value to be used on a cache
hit/miss and associating corresponding confidence counter
for signature. The paper tries to improve on the existing SHIP
policy by suggesting multiple enhancements. First enhance-
ment is to insert lines with RRPV =0 for high confidence
(saturating) reuse of lines. Second is to weigh cache hits
and misses similarly(update on first reference) and not have
overtraining. Third enhancement associates RRPV =3 (low
priority) to writeback lines, since they are more likely to be
evicted from here as well. Fourth is to use different signature
for demand and prefetch requests and thus reduce interfer-
ence. Fifth is the update criteria of prefetch requests if they
are followed by prefetch or demand (less priority). Based
on these enhancements the paper is able to achieve a 6.2%
improvement in IPC over LRU for single core configuration
without prefetcher and 4.8% with prefetcher [2].

2.3.1 Meta Data - Over a baseline LRU, it consists of the
following :

e Per line metadata in the LLC. This is 2 bits for the
RRPV value and 1 bit to indicate if the line was added
due to prefetch or not . The overhead of RRPV is §KB

e Signature History Counter Table - This is a 16K entry
3bit counter that measures confidence of reuse amount-
ing to 6KB for a core and 24KB for 4 cores

e Sampled Set for signature - This is a 64 set 16 way
structure(1K entries) of 15-17 bits (14 - signature , 1-
Reuse, 2- Only for multicore system) that tracks Reuse
History of a signature. This is in total 1.875-2.125KB

e Storage to identify Sampled Set - This is a 64 En-
try2byte wide table that identifies signatures for sam-
pled set Table insertion. This is merely 128 Bytes in
size.

2.3.2 Key Design - The most important policies of the Re-
placement policy are as follows :

e Insertion of lines with RRPV = 0 for saturated counter
value. This is one of the key design ideas since the
RRPV of 2 and 3 are inserted depending on the Con-
fidence Counter. Giving a value of 0 keeps the block
for farther time in the line thereby favouring the reuse
characteristic

e The second is to bifurcate the re-reference behavior of
demand accesses vs prefetcher accesses. With this it as-
sociates different confidence value for each access and
leads to less interference between them, which is cru-
cial in workloads that rely heavily on either prefetches
or demand accesses only

e Writing Writebacks with RRPV of 3, this allows to pri-
oritize Writeback evictions since the RRPV is already
3 and can safely be written into memory as they are not
likely to be reused.

2.4 Next line Prefetching

Next line Prefetcher is a basic form of prefetcher which tries
to exploit spatial locality. The idea behind this is, if a block
is used, a consecutive memory location block is more likely
to be used unless there are branch instructions of procedure
calls or jumps. Since the branches and procedure calls are
not a huge factor of the instruction footprint, fetching few
blocks along with a miss helps in reducing stalls.

2.5 D_JOLT Prefetcher

D-JOLT predictor [5] is a return address stack based prefetcher.
The return address stack is used to predict the return address

of the next set of instructions. During the learning phase it

generates a signature based on the Hash of Return Addresses

in the Stack and associate with corresponding cache miss

that was observed. It is based on a RDIP prefetcher with the

only difference being, the Stack of Return Addresses uses all

addresses instead of evicting them along with a counter to

distinguish the signature, this helps in adding some correla-
tion between previous function calls. D-Jolt uses a total of 3

prefetchers, each with its own unique property to compensate

for the accuracy/ timeliness drops of other prefetchers. The

long and short prefetchers use tables to record signatures

and miss addresses. Fallback prefetcher is a stream based

prefetcher [9].

2.4.1 Meta Data - The D_JOLT prefetcher uses 3 prefetch-
ers. The long range prefetcher has a signature queue con-
sisting 15 deep 23-bit wide entries. The signature Generator
consists of a 7deep 32-bit wide FiFo and a 32-bit Counter.
The miss table consists of 2048 set, 4way associative deep
76-bit(Tag, LRU, miss vector) wide entries. The short range
prefetcher has a signature queue consisting 4 deep 23-bit
wide entries. The signature Generator consists of a 4 deep
32-bit wide FiFo and a 32-bit Counter. The miss table con-
sists of 1024 set, 4way associative deep 77-bit (Tag, LRU,
miss vector) wide entries. The fallback prefetcher uses 16
deep 65-bit wide (Tag, replacement, address) entries Train
table and 16 deep 63-bit (Tag, replacement, address) wide
entry Monitor Table. There is a upper bit table consisting of



31 entries and 41 bit wide (Tag, Valid). There is a miss table
of 256 set, 4 way 79 -bit wide (Tag, LRU, miss vector). All
totalling to 125KBytes

2.4.2 Key Design - The key design of the prefetcher is
the signature generator, the miss tables and the signature
queue. The fifo stores return addresses from the stack and
implements a counter that counts number of returns to asso-
ciate a unique signature instead of limited signature.. Long
range prefetcher has 7 deep FIFO and short range has 4 deep.
The signature queue implements the distance parameter. By
adding the signatures in a queue of N-Deep, the prefetcher
associates a miss address on popping a signature from queue,
which would be N-deep in the past. Miss table associates
signature with Miss address. Upper bit table is added as a
fully associative cache to reduce size of normal miss table.

2.6 FNL+MMA Prefetcher

FNL-MMA Prefetcher [6] uses a combination of two prefetch-
ers. The FNL prefetcher is based on the idea that all next lines
should not be prefetched, as it causes a lot of L2 accesses
and over-pollution. Instead only meaningful and reasonable
to be used lines should be prefetched. By associating the
current miss with previous misses and a 2bit counter, the
next N blocks are fetched. The corresponding next miss need
not prefetch again and uses a filter mechanism to reduce
prefetches. The MMA prefetcher prefetches non-contiguous
lines and tries to foresee several blocks ahead in what in-
struction blocks are likely to be missed based on the current
misses. By associating confidence with effect of one miss on
another, it can look ahead into misses.

2.5.1 Meta Data There are several key components. I-
shadow cache with 192 entry 17-bit wide Table that is similar
to a Icache used to trigger prefetch. It uses a 64K entry 1-bit
Touched and 2-bit WorthPF Tables. These are used to predict
which blocks to fetch. FNL prefetcher uses a 128 entry 17
bit FNL filter to skip requesting already present blocks in
prefetch buffer. MMA prefetcher uses an 8K entry Miss table
which is 71 bit wide (tag, block-address, control bits) and a
24 entry 58bit wide MMA filter. Total hardware budget lies
around 96KBytes. And FNL filter reset interval of 8K. The
FNL Prefetcher uses a distance of 5 blocks and MMA uses a
distance of 9 blocks. There is a slight difference in the paper
submitted to the conference vs the actual code used. The IPC
speedup achieved with Old parameters (9 distance and 16
entry MMA filter) is 1.28745 whereas with the updated code
(11 MMA distance and 24 filter) is 1.292. We will refer the
FNL+MMA in this paper as the Prefetcher with the updated
parameters

2.5.2 Key Design - The touched Entry table is a 1bit counter
of recently touched block flag along with a counter to indicate
its demand access in a dedicated fix interval. The Touched En-
try is set when a miss occurs, and the corresponding counter
of previous Block is set to 3, to indicate that a miss on B
causes miss on B’ . By changing the confidence counter of
miss intervals, it correlates when to prefetch and when not
to. Next time when a Block Miss occurs, depending on the
Counter, next 5 blocks are prefetched. The Miss interval
dictates the time to refresh flags and clear Recentness, to

only fetch meaningful data. The MMA Prefetch Table asso-
ciates the miss address with predicted address using a Cache
like table of Tags and Block Address. The MMA prefetcher
prefetches 9 blocks in advance since we need to prefetch
blocks well in advance. This is slightly different from a Next
predicted Miss prefetcher as it can look N blocks ahead of
potential miss.

3 Motivation

MPKI vs Traches for Prefetcher

——No_Pref FNL+MMA pjoLT

Figure 1: MPKI of individual traces compared with
No_Prefetcher, FNL+MMA and D_JOLT

IPC vs Traces

Figure 2: IPC of individual traces compared with LRU,
Hawkeye and Ship Baseline versions

Fig 1 shows the improvement in MPKI for the first prefetch-
ing championship traces on using prefetcher on L1 instruc-
tion cache. The comparison is done against FNL_MMA and
D_JOLT with a no prefetcher case. It can be clearly seen that
the improvement is massive on adding a prefetcher. This is
because the likely to be used lines are fetched before they are
used, hence incurring fewer misses.

Fig 2 shows the improvement in IPC for the third replace-
ment championship traces on using LLC replacement policies
on shared Last level Cache. The comparison is done against
Ship++ and Hawkeye++ with a LRU case. It can be seen
that the improvement is not so massive. This is because Last
level caches are big but there is not enough budget to have
metadata corresponding to all the entries, hence the idea of
sampling is used to generalize the idea of replacement across
LLC. While it may not be optimal, it still reduces he misses
and improves IPC

Some studies [8] have shown that not all cache lines need
to be given an MRU position for an LRU scheme, because



it occupies space in the cache before it can be evicted, if it
was anyway not going to be re-referenced before eviction.
Modern cache replacement policies try to use this to the ad-
vantage to track dead cache lines that are likely to be evicted
before being re-referenced and place them in a LRU position
instead of MRU position, while this does not reduce the miss
in evicting the dead block, it gives performance boost for
subsequent accesses to other cache lines that are likely to be
re-referenced.

Replacement policies need a metadata structure for track-
ing such scenarios. While smaller caches can have one to
one mapping between cache line and the replacement policy
metadata, but larger caches cannot have one to one mapping
between cache data and the metadata. Hence replacement
policies use clever techniques to go past this issue. Most
of the policies implement a counter (RRPV) [7] that mim-
ics how many times the cache line was re-referenced before
evicting it. The idea is that lines can be inserted with RRPV
of 0 to max, and max RRPV lines should be evicted first. So
RRPYV becomes an ageing factor. Typically 3 bits suffice for
tracking the interval for most of the cases.

Just like McFarling [10] predictor used a local and gshare
predictor to beat a tournament predictor, it might seem intu-
itive to combine two prefetchers or two replacement policies
and get a compounded gain. The hardware budget used in
prefetching championship was 128KB, so to have meaningful
performance over the existing two prefetchers, similar gains
need to be shown at the same hardware budget. Main com-
ponents used in the prefetchers are the signature generators
and the tables to store confidence. Prefetchers hold more
of spatial locality then temporal locality, so it is not easy to
generalize the behavior of one prefetcher at a lower budget,
since two events different in space need to be represented by
different signatures. However, for LLC replacement policies
it is different, since the policies rely on behavior of a subset of
LLC sets to generalize the behavior of the LLC, it is possible
to duel two replacement policies. The reasoning for that is,
even though the generalization using sets is working, it can
predict certain workloads better than all workloads since dif-
ferent workloads leave a different cache footprint. And due
to a smaller set, it is very likely for policies to work better on
different policies. If we have a way to combine two policies
without destructive interference, we can achieve even better
performance.

[8] introduces us to 4 different ways of adapting replace-
ment policies

3.1 Static Insertion

In this type of insertion, all the lines can be placed in LRU
position for LRU or with maxRRPV for RRPV based policies,
only if the lines are referenced again, should the lines be
moved to MRU for LRU or 0 RRPV for RRPV based policies,
this makes the case of handling dead blocks easily. These
blocks will be the first candidates to be evicted and there
won’t be a need for Incremental checking of RRPV for RRPV
based policies.

3.2 Bimodal Insertion

This is a slight variation to the Static insertion policy, instead
of placing all the lines in LRU or max RRPV, lines should be

placed in MRU or 0 RRPV positions based on some proba-
bility threshold. This probability can be implemented using
simple saturating counters ather than complex algorithms.
ON every Hit the counter is decremented towards 0 and in-
cremented on misses. If there are more hits then the counter
saturates towards O and will allow to insert lines at MRU po-
sition or 0 RRPV indicating that these can be cache friendly
lines.

3.3 Dynamic Insertion

While static policy is easier to implement, it does not adapt to
running workload. It is found that certain workloads benefit
from a certain policy and it would be beneficial if cache
line friendly replacement policy dictate the insertion and
eviction. Dynamic insertion allows to choose between 2
different policies depending on which one is incurring fewer
misses. Each policy can keep metadata corresponding to each
set and dependin on a saturating counter the policy that is
currently incuring lower misses can be chosen.

3.4 Set Dueling

The higher in hierarchy the caches, the bigger the structures
needed to track the cachelines. So to minimize the metadata
structures, we require to shrink the structure. This is where
set dueling helps, it dedicates certain number of sets to one
policy, certain number of sets to other policy and remaining
sets are decided based upon a saturating counter. This counter
is brought towards one policy on misses in other policy’s
prediction. By keeping just a saturating counter and small
structure to track which sets are dedicated to a policy, the
overhead of this policy is least. This also augments from
the fact that LLC replacement policies are generalized using
sample sets which can closely represent the behavior of the
whole cache.

4 Architecture

The storage budget of Hawkeye structures amounts to
31.2KB and that of ship amounts to 20KB, in order for the
adaptive policy to have the same or better improvement, the
budget should still fit within the union of the individual hard-
ware budgets. However it is noticed that most of the structures
across Hawkeye and Ship are not same, the only similar thing
between Hawkeye and Ship is the RRPV value. Hawkeye
uses a static search of maxRRPV or the max among the cur-
rent RRPV values and uses an aging factor to account for not
keeping stale RRPV values. Whereas Ship uses an iterative
increment approach to find the first set that has maxRRPV
values, this itself can be termed as the aging factor. Hence we
compare the performance of a system with simple inclusion
of bot structures and combining RRPV of both structures.
Combining RRPV gives least performance degradation so we
go ahead with that approach suggesting that both Hawkeye
and Ship are quite orthogonal in their sampling, but their
metadata uses similar approach to update. To further reduce
the budget, we compare whether having a RRPV value of 3
suffice or 7. It is seen that most of the performance gains are
still intact when moving to a lower RRPV, indicating that the
workloads have a re-reference interval lesser than the cache
ways.



= Dedicated to Policyl

[ Dedicated to Policy2

B Follower Sets

Decides follower sets

Figure 3: Dynamic insertion using set dueling

With the current structure the hybrid design HawkShip is
still not within the hardware budget bound. So to analyze for
further optimizations the following structures are resizedor
combined:

e Predictor Tables reduced from 2K to 1K entry each,
further reducing the signature size

e Signature entries for Ship reduced from 16K to 8K
e Signatures of Hawkeye and Ship reduced by 1 bit each
e Common 2-bit RRPV

All these optimizations bring the hardware budget into 32KB.

Thus our baseline design for Adaptive policy becomes the
following :

Hardware Budget
|| Component Parameter Budget ” ”

Hawkeye Sampler 2800 4-byte entries 11.2KB
RRPV 2 bit per line 8KB
Hawkeye Predictor 2 1K entry 4-bit Cntr 1KB
Occupancy Vector 64 vectors, 64 4-bitentry  2KB
is_prefetched 1-bit per line 4KB

Ship Samples 1.87KB
Ship Sample Set ID 128B
Ship SHCT 16K entry per core 3KB

Hawkeye Sample State 64 set 16 way 11-bit 1.2KB

Set dueling Counter 2B

This totals to a 29.88 KB budget. Next we present sensitiv-
ity study of the given design over multiple configurations.

MPKI vs Design Choice

30

25 /\
_ 20 —
4
g 15
10
5
0
N N & «zg\\ Qg\\ é‘\\ S P
& & & NS & X ) « ©
P P P 5 5 > o K 5
N R & & < - v & N
N RO &
& & & >’

Design Choiec

Figure 4: MPKI variation with Prefetcher configuration
across different Design states

5 Simulation Methodology

The replacement policy is evaluated on the 3rd Cache
Replacement Championship Infrastructure present at [4].
Traces are the same as ones run for the championship. In
this paper we only check with the traces that are publicly
available. There are total 200 available traces. However to
reduce the runtime, 51 traces were selected from the pool
of 200 traces based on their MPKI. Traces with significant
MPKI was chosen by choosing a threshold MPKI. The poli-
cies are warmed up for 50M instructions and then run for
100M instructions for Hawkeye instead of 250M to speed up
simulations [1], warmup instruction count for Ship is 10M
and 100M for running as mentioned in paper [2]. Results
are then populated as seen in the graphs. We compare the
performance of new replacement policies with Baseline LRU
replacement policy. The IPC variation over all 51 workloads
for the baseline of LRU, Hawkeye and Ship++ is represented
in 1 Adding over previous work, both configurations of single
core were simulated i.e. with and without prefetcher.

Speedup for Replacement Policies with Prefetcher

Configuration Design  IPC Speedup MPKI
LLC with Prefetcher LRU 1 23.055
LLC with Prefetcher Ship 1.02882 25.573
LLC with Prefetcher Hawkeye 1.029 24.54
LLC with Prefetcher Hawkship 1.0223 24.679

Speedup for Replacement Policies without Prefetcher

Configuration Design  IPC Speedup MPKI ”
LLC no Prefetcher LRU 1 17.86
LLC no Prefetcher Ship 1.05 18.73
LLC no Prefetcher Hawkeye 1.047 18.58
LLC no Prefetcher Hawkship 1.044 19.19

6 Design Space Analysis
The path to reach the optimal design choice involved mul-
tiple attempts

6.1 Combining Policies

To start the exploration, both policies were simply merged
without changing or modifying their structures. This was
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Figure 5: IPC variation with Prefetcher configuration
across different Design states

MPKI vs Design choice
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Figure 6: MPKI variation with no Prefetcher configura-
tion across different Design states

IPC vs Design choice
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Figure 7: IPC variation with no Prefetcher configuration
across different Design states

to check if there is a huge destructive interference between
the two policies. Care was taken to rename the defines and
other structures like SHCT and RRPV so that the simulation
isn’t modelled wrongly. The observation from figures 3
to 6 for points "Ship Baseline" , " Hawkeye Baseline" and
"Separate RRPV" can be seen and shows that it falls as per
with the expectation that set dueling can be implemented
without major interference.

6.2 Combining RRPV

In this exploration, to minimize the hardware budget, the
RRPYV structures are combined. While ship does an iterative
increment of RRPV if it doesn’t find a maxRRPYV line, Hawk-
eye simply evicts entry that has the current maximum among
the lines. At a first glance this seems to be orthogonal and
not combine-able, however, even Hawkeye does an ageing of
the RRPV values during replacement update state. So as can
be seen from figures 3 to 6, the MPKI and IPC of combined
RRPV is not very bad. Also to compact the size further the
RRPV was reduced from 7 to 3, and no noticeable change
was observed. This shows that the structures have different
ways of aging the RRPV value but the final effect is simi-
lar. The structures don’t fail terribly on reducing the RRPV
value from the points "Combined 7RRPV" and "Combined
3RRPV" indicating that the maximum re-reference interval
is well within the number of ways in a cache.

6.3 Reducing Hawkeye Sets

Here, the sampler entries of Hawkeye were reduced from cur-
rent 2800 to 2048 and all the way down to 1024 (not shown),
the results gathered from this exploration revealed that 2800
is an optimum sampler size and anything below it simply
results into higher MPKI and lower IPC. It an be reasoned
by the sampler having more conflicts in the cache then the it
can benefit from the reduced size. Thus the sampler entries
for hawkeye are kept to be 2800. This can be seen from the
points "Combined 3 RRPV" and "2048 set" in figures 3 to 6

6.4 Reducing Signature Tables and Counters

Signature tables associate the events of sampling by the re-
placement policy to reduce aliasing. It gives a notion of
different events and their associated confidence counters, to
help decide with certainty whether a line should be added
with maxRRPV value or 0, or whether it is to be ignored
for prefetch cases and writeback. By changing the signature
sizes from "2048Set" to "Reduced Signature Table" in figures
3 to 6, no significant performance degradation is seen. This
can be attributed to the fact that the number of unique events
that need to be hashed by the policy is sufficient in lesser
signature table.

7 Analysis

The structures of individual policies is as follows. Ship
- 20KB, Hawkeye - 31.88 KB , Hawkship - 29.88KB. The
IPC speedup for both configurations of Hawkship with and
without prefetcher is still less than Hawkeye and Ship even
though we have tried to combine two replacement policies.
several observations can be made on the design exploration

e Ship is already optimal at 20KB budget using its struc-
tures, anything on top of it is adding interference, even
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Figure 8: MPKI variation with no Prefetcher configura-

though the difference in IPC is minimal. For configu-
ration with prefetcher the IPC of Hawkship is 1.0223
which is roughly 0.63 % (ship) and 0.65% (hawkeye),
for configuration without prefetcher the IPC of Hawk-
ship is 0.57% less from ship and 0.286% less from
hawkeye

From Figures 8 and 9 it can be seen that MPKI for
Ship and Hawkeye is sometimes worse than LRU and
same is observed from Hawkship as well, indicating
that for some workloads the Reeference Interval mech-
anism incorrect as it does not correctly model LRU
behavior. Or it can also be attributed to the fact that
while the lines are inserted in LRU, they get referenced,
but the optimization of Ship and Hawkeye to insert with
RRPV 7 causes them to be evicted early and hence no
re-reference, thereby increasing misses.

There are some workloads where Hawkship is perform-
ing better than Hawkeye and Ship like sophinx,omnetpp
mcf, so clearly there is some scope if not zero for set
dueling.

There is huge magnitude drop in IPC across Prefetching
and Non prefeching cases even for the baseline configu-
rations of Ship and Hawkeye, which indicates that their
existing policy of identifying prefetch requests and as-
sociating optimized RRPV is not fully optimal. The
second reason can be that prefetches take unnecessary
space in case of Inclusive caches in the LLC and thus it
causes less available space for useful sets to remain in
the cache.

For the current configuration and design space explo-
ration, it seems Ship and Hawkeye are already perform-
ing better and are quite similar and thus it is not a right
candidate for set dueling. The idea of set dueling is
to have orthogonal policies that work better for certain
workloads. Since the MPKI variation is minimal be-
tween Ship and Hawkeye from 2 there is not much
scope for set dueling Adaptive policy

Figure 9: MPKI variation with Prefetcher configuration

8.1

Speed up analysis

L1I-Cache size for Instruction Prefetching championship
was 32KBytes whereas LLC size for Cache Replace-
ment Policy is 2MB per core and 8MB for multi-core
system

Overhead of Ship metadata at 20KBytes for the Prefetch
version is 0.97% with respect to LLC size. The over-
head of Hawkeye policy at 31.8KBytes is 1.56% with
respect to LLC size.

In previous section it was seen that the speedup of Ship
is 2.882% for configuration with prefetcher and that
of Hawkeye is 2.9% over the LRU baseline. With the
structure sizes that they have, the speedup per KB of
both these structures is 0.1441 (ship) and 0.09 (Hawk-
eye). Clearly Ship performs better than Hawkeye at
lower budget and hence higher speedup per KB

Instruction prefetchers simulated in prior work were
96KBytes (FNL+MMA) and 125KBytes (D_JOLT) .
The corresponding area overhead in comparison to L11
cache size is 300%(FNL+MMA) and 400%(D_JOLT)

In previous paper it was seen that the speedup of D_JOLT
is 28.94 and that of FNL+MMA is 28.7 over the no
prefetcher baseline. With the structure sizes that they
have, the speedup per KB of both these structures is
0.2315 (D_JOLT) and 0.302 (FNL+MMA). Clearly
FNL+MMA performs better than D_JOLT at lower
budget and hence higher speedup per KB

Comparing LRU against other replacement policies vs
comparing No prefetcher against prefetchers doesn’t
give a good comparison. So speedup of Prefetchers
as compared against next line was computed and it is
1.277 for D_JOLT and 1.27584 for FNL+MMA. With
the structure sizes that they have, the speedup per KB
of both these structures is 0.2216 (D_JOLT) and 0.289
(FNL+MMA). Clearly this speedup per KB is lower
than when compared with no-prefetcher but still better
than replacement policies.

Given a resource constraint in the hardware budget, it would
make more sense to invest the budget for a better prefetch-
ing policy (frontend processer) than for replacement pol-
icy(backend processor).

8 Prefetcher vs Replacement

This section tries to compare the speedup obtained by
using either the Instruction Prefetchers or Cache Replacement
Policies over their baseline approach.



8.2 Latency comparison

Instruction prefetchers are front end processors and need to
work in advance than other units like Branch Predictor as well
as Fetch Engine, hence they have to be computationally less
expensive as they can not tolerate more access time, however
they can tolerate more size for meta-data as the corresponding
structures for which they are designed are relatively small. On
the other hand, LLC sizes are quite big but their replacement
policies can tolerate higher latencies as they are backend
processes. Some of the reasons for computational latency in
LLC structures vs Instruction prefetchers can be as follows:

e The associativity of structures like Occupancy Vector
or Sample Set are higher than 16, somewhere even upto
64. Such highly associative structures take more time
to access for comparison between different ways of a
set. This can be one latency hungry computation. LLC
cache lines typically being higher in size as well as
ways require bigger comparators as well as cascaded
muxes to resolve Hits.

e The LLC structures itself are huge and can take more
time to access, plus they are dependent on demand
misses and response from memory, whereas prefetchers
are lightweight and run with minimal interaction from
Branch predictors only to flush entries on mispredic-
tions.

e Most of the replacement policies check for RRPV val-
ues, if RRPV of a cache line is not close to the max
value it keeps on reiterating and adding the RRPV to
find the first highest possible value which can incur
latency in finding such RRPV.
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10 Code
The code is available in repository : CSE240C HW3
Steps to run are added in File called StepsToRun.txt

11 References

[1] https://www.dropbox.com/s/dl/7riayq24gssxqlj/crc17-hawkeye.pdf
[2] https://www.dropbox.com/s/algx6mwxaS59 1uoy/Ship%2B%2B.pdf
(3]

[8] https://people.csail.mit.edu/emer/papers/2007.06.isca.dip.pdf

[9] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers,” in HPCA, 2007, pp. 63-74

[10] https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf

https://www.dropbox.com/s/z685pmu 1 mn2lgr1/Expected%20Hit%20Count.pdf

(4]

https://www.dropbox.com/s/06ct9p7ekkxaoz4/ChampSi_CRC2_ver2.0.tar.gz

[5] https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/D-
JOLT.pdf

https://research.ece.ncsu.edu/ipc/wp-
content/uploads/2020/05/FNLMMA -final.pdf

https://dl.acm.org/doi/10.1145/1815961.1815971

[6

=

[7

—


https://github.com/Shahmonil1996/CSE240C-HW3

