
CSE260 -PA1
DEBADITYA BASU , MONIL SHAH

GIT REPO : hw1-pa1-dbasu-m3shah

Q1. Results - 15 pts
Give a performance study for a few values (about 12 different values) of N from
32 to 2048 on your optimized code both in Q1.a. and in the file data.txt (see
"what to submit->data file" for specific format. You will lose points if you do not
follow this format.)

Q1.a. Show performance of your optimized code for the following numbers (fill out
the table):

GIT REPO : hw1-pa1-dbasu-m3shah BRANCH NAME : main

N Peak GF

32 12.585

64 16.995

128 20.895

256 23.33

511 23.525

512 23.815

513 22.46

1023 23.21

1024 23.49

1025 22.605

2047 23.73

2048 23.48

Q1.b. Make a plot of the performance of the three versions of code: the naive
code, the OpenBLAS code, and your optimized code. OpenBLAS and your
optimized code should include all N values from the table. The naive code only
has to include N <= 1025.

BRANCH NAME : main

Q2. Analysis - 33 pts
Clearly Describe:

Q2.a. How does the program work - don't include the source code, instead
describe it in prose, flow chart, pseudo-code, etc.

Solution:

Input Matrix: Output Matrix:

MATRIX A : m * k MATRIX C : m * n

MATRIX B : k * n

1. The first loop breaks C matrix into panels of Mc*n and A matrix into panels of
Mc*k.

2. Second loop converts the panels created above into Kc wide panels. This is
done for A matrix (Mc*Kc panels). For B the stripes are created Kc high(Kc*n
panels)
➢ Next panels of A are packed into subpanels of Mr height(Mr*Kc) in row

major order of accesses in case of outer product. The column elements
become sequential in memory.

3. Third loop converts C and B into panels that are Nc wide. This is done for C
matrix (Mc * Nc panels) and B into (Kc*Nc panels).
➢ Next panels of B are packed into subpanels of Nr wish t(Kc*Nr) for

cache friendly access. The row elements are sequential in memory.

4. The inner two loops are designed to call the microkernel such that A panel fits
into L1 and B panels fit into L2.
➢ A matrix panels are further subdivided into subpanels of Mr*Kc.
➢ B matric panels are further subdivided into subpanels of Kc*Nr.

5. This is for the microkernel implementation which implements vectorization
of Mr*Nr block of C matrix multiplication

LOOP 1:

LOOP 2a:

LOOP 2b:

LOOP 3a:

LOOP 3b:

LOOP 4 & LOOP 5

Microkernel

Q2.b. Development process: What did you try, what worked, what didn't work,
theories on why. Negative results are sometimes as illuminating as positive
results, so try to explain as best as you can. Include the necessary graphs for the
optimizations implemented.

1. Implementing Packing and Microkernel
➢We first tried to get packing work. To debug if packing was fine we
implemented an outer product based microkernel.

➢While running different size matrix we noticed, that the matrix
multiplication used to fail if the size of matrix was not multiples of Mr or Nr.

➢We noticed that our padding of 0 was wrong and once we fixed that with
necessary changes to the macro-kernel and implemented the microkernel
accordingly we got the first performance mean as 2.79 Gflops/s.

2. Vectorization
We tried to implement AVX2 based vectorization and changed the
micro-kernel accordingly.
➢ We first tried with implementing broadcast method that used 4 256 bit
registers for both C and A matrix sub panels and 1 256 bit for B matrix sub
panel.(The value would be Mr=4 and Nr=4)
By using 9 256 bit registers in total, we got performance of 12.20 Gflops/s

➢Since we have 16 256bit registers available, to maximize the advantage of
AVX2 based vectorization we implemented broadcasting with 7 256 bit
registers for both C and A matrix sub panels and 1 256 bit for B matrix sub
panel. This way we were able to use 15 of the available 16 256 bit registers.
(The value would be Mr=7 and Nr=4)
By using 15 bit 256 registers, we achieved performance of 16.04 Gflops/s.

3. Tuning Parameters of Kc,Mc,Nc
Next we tried to tune the parameters of Kc,Mc and Nc to best utilize the cache
sizes and tried a few parameters to arrive at the parameters which gave us the
best performance.
➢ After changing the parameters to (Kc=128 Mc=1024 Nc=124) we got
performance of 21.60 Gflops/s.

➢ After further tuning the parameters to (Kc=256 Mc=2048 Nc=64) we got
performance of 22.41 Gflops/s, which was the highest we got.

Q2.c. Point out and explain at a high level irregularities in the data (Places where
performance scales in a non-linear way) - referring to your graph in Q1.b.

1. Smallest Matrix Size have the least performance
Since the caches are not utilized to its full capacity, the blocking followed by
padding of 0s for packaging do not optimize and add a lot of useless
calculations which results in a lot of overheads.

2. Drop in Performance of sizes that are 1 more than Even Powers
The reason for the drop from Even powers to the next size is because of extra
padding that we have to introduce to make sure that computation is correct.
This results in a lot of unnecessary calculations for the zero padded data and
reduces performance.

3. Performance is highest at the size of 512
This is likely because the speedup that we are able to achieve through
caching is diminishing at higher sizes because of capacity misses.
Cachegrind tool shows that size of 512 as having the lowest capacity miss rate
at 5.2% and 513 and 1024 having miss rate as 5.4% and 6.1% respectively.

4. Same trend among Blas and Optimized Code Performance
From the figure it can be seen that Blas and our Optimized kernel is having
negative and positive slopes of peak performance in the same direction
Only transition from 256 -> 511 size is in opposite directions

Q2d. Supporting data - e.g. analysis of cache behavior, parametric searches, or
whatever will support your conclusions. Feel free to use tools such as cachegrind
and knowledge of the machine’s micro-architecture to support your theory. Note:
cachegrind is slow therefore it is ok that you only measure a subset of n. Explain
why we organized our skeleton code in a different way from the BLISlab tutorial.

The L1 sizes are 32KB and L2 size is 256KB. This gives us the estimate of how
much Mr, Kc and Nc to keep so that they fit sufficiently within the cache

L1 Cache is expected to have both subpanel of A and subpanel of B to perform
the matrix multiplication by Micro-kernel..

Microkernel operates on subpanel A = Mr * Kc ;
Microkernel operates on subpanel B= Kc* Nr

By calculation assuming 32KB = Kc*(Nr+Mr)
Kc is approximately 372
But since we cannot use full L1 for just storing subpanel A and B as L1 must
store other things as well we can
narrow down to the nearest power of 2 which is 256.
Thus Kc = 256, resulting in sub panel A and sub panel B occupying 22KB out
of the 32KB allowed which is fair.

L2 Cache should be able to store panels of B as subpanels of Bp are moved in
and out of the L1 from L2.
Bp panel is Kc*Nc.
Since L2 Cache has both instruction and Data instructions, assuming half is
for data. Available Size is 128KB.

Assuming 128KB is used to store Kc*Nc Bp panel we get Nc as 64.

Based on the following inputs we used Cachegrind to get some data and
eventually arrived with (Kc = 256 ; Nc = 64 ; Mc = 2048)

Cachegrind results:

CONFIG SIZE L1 Miss Rate

(Kc = 256 ; Nc = 64 ; Mc = 2048) 2048 | 1024 | 512 6.3% | 6.1% | 5.2%

(Kc = 256 ; Nc = 64 ; Mc = 1024) 2048 |1024 | 512 6.5% | 6.1% | 5.2%

The BLISlab tutorial code is compliant with the column major storage principle as
it was implemented for FORTRAN programmers. Since we are using C, which is
row major storage based, our skeleton becomes different.

C : Cxy = A(x-row) * B(y-column)

FORTRAN : Cxy = A(x-column)*B(y-row)

BLISlab operates upon the inputs received as Transpose of the actual input
matrices, hence the skeleton code becomes different.

Q2.e. Future work - what could you do if you had more time?

1. We wanted to explore and see if there are any compiler hints that we can add to
the code like prefetching something while the thread is busy doing something
else.

2. We also want to see if we use vectorization with 4 256 bit registers for A and 2
256 bit registers for B and 8 256 bit registers for C. Though it will use 14 16 bit
registers in total which is 1 less than what our current implementation has , but
we could have utilized it for performance gain as Mc would have been a
multiple of Mr.

3. We wanted to observe the objdump and see what best configuration we can
keep so that registers don't spill on the stack.

Q2.f. (Optional) Any additional insight or optimizations that you tried
implementing and how it affected the performance.

1. We tried to remove as many redundant instructions as possible. Earlier we
were using some additional variables, but later to get speedup we moved to
removing those additional variables.

Q3. References - 2 pts
List all your references here.

● UCSD CSE 260 SP22 Lecture Slides
● https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

#techs=AVX2
● https://github.com/flame/blislab
● https://www.cyberciti.biz/faq/check-how-many-cpus-are-there-in-linux-syst

em/

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=AVX2
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=AVX2
https://github.com/flame/blislab

Q4. Extra Credit - 5 pts
(5 pts) Q4.a. Report performance for AVX512 (you may use the table from Q1)
below. Also please add a note in a few sentences describing your AVX512
implementation (only describe significant differences from the AVX2
implementation).

BRANCH NAME : avx512
Implemented AVX512, here are the results:

N Peak GF

32 17.225

64 25.685

128 31.715

256 32.96

511 31.36

512 32.285

513 30.42

1023 33.495

1024 34.925

1025 33.06

2047 36.795

2048 36.57

Difference with AVX2 are as follows:
With AVX512 we are able to perform more operations in the microkernel.
We are using 8 512 bit registers for both A and C and 1 8 bit register for B.
So in microkernel we are able to do 64 calculations in a single call.
(Mr = 8 and Nr=8)
In our AVX2 implementation we could use only 15 256 bit registers and perform 28
calculations in a single microkernel call. (Mr=7 and Nr=4)

(5 pts) Q4.b. Parallelize your code with OpenMP and report your results and
conclusions. See BLISlab tutorial Step 4 for instructions on how to do this.

(5 pts) Q4.c. Implement your algorithm (including the SIMD optimization) on
ARM ISA. You could use NEON, which is a SIMD ISA on ARM similar to AVX on
x86 architecture. Make sure to select the ARM version of Linux on AWS. We
suggest choosing t4g.micro as your instance type.

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon

