
PA3 Aliev-Panfilov

Amardeep Ramnani - A59005452 Mohit Shah - A59005444

Debaditya Basu - A59005472 Monil Shah - A59012111

GitHub Repo Link : https://github.com/cse260-sp22/hw3-pa3-aramnani-dbasu-m1shah-m3shah.git

Section 1: Developmental Flow

1.a) How the program works:

● The program starts by first taking the user input for deciding the size of the computation box, number

of iterations and the processor geometry and it proceeds to allocate memory for the computation box

for E, E_prev and R. The user input size is padded by 1 in both the X and Y direction to enable

computation on the boundaries of the box for the stencil approach.

● Then the computation boxes E_prev and R are initialized where the right half-plane of E_prev is set

to 1.0 and the left-half plane is set to 0. The bottom half-plane of R is set to 1 and top-half plane is set to

0.

● It is important to note that the same piece of code works on all the processors specified in the geometry

and each processor has its own copy of the computation boxes.

● After initialization, the program proceeds to solve the Alien-Panfilov equations on multiple processors

parallely. This starts with the Processor with rank 0 distributing the initial conditions to the other

processors.

● Rank 0 calculates the size of the submatrix to be handled by each worker and its corresponding start

index in the global scheme. After the index and size is obtained the corresponding data is packed for

E_prev and R and are sent to the corresponding rank using MPI_Isend() calls and then rank 0 waits for

the MPI_Isend calls to return.

● Each worker apart from Rank 0 worker issues a MPI_Irecv() call to get the initial conditions from Rank

0 and then unpacks the data and updates its own copy of E_prev and R.

● After the initial distribution is completed, the process proceeds to find out the X and Y coordinates of

the worker Rank in the processor geometry. These coordinates help the rank to decide in which

direction it would have to communicate the ghost cell data. The communication of each rank with its

neighbors happens using MPI_Isend/Irecv APIs.

● The submatrix size for each rank is determined by first equally distributing along X and Y directions.

Then if the X or Y coordinates of the rank falls below the remainder produced by division of matrix size

by size of processor geometries the submatrix size is increased by 1 and then the final size is padded in

both directions to allow ghost cell communication.

● While communicating with left/right neighbors each rank would have to pack the data since memory is

organized in row major fashion. And while communicating with top/bottom neighbors the process can

just specify the start address and size to send.

● Since we are using non-blocking Isend/Irecv APIs we need to synchronize and wait for the

communication to complete and then the local E_prev is updated with data received.

● Before proceeding to the computation the program updates the padding region by copying the data

from the boundaries to avoid computing single sided differencing.

● Then it proceeds to complete the ODE and PDE calculations using the stencil method and there is an

option of using the fused or the unfused code. We have also provided an option to manually vectorize

the ODE and PDE calculations.

● After all the iterations are completed, the program calculates the local LInf and sum of squares for each

rank. Then the program uses the MPI_Reduce API to calculate the Global maximum Linf among all

ranks and the sum of Squares for all ranks. The global sum of squares is used to compute the L2Norm.

The global LInf and L2Norm are returned to end the program.

https://github.com/cse260-sp22/hw3-pa3-aramnani-dbasu-m1shah-m3shah.git

Q1.b) What was your development process? What ideas did you try during

development?

● We first compiled the starter code on sorken with the matrix size of 800, number of iterations 2000 and

process geometry 1x1. This sets the baseline L2 norm and Linf values which would be helpful to verify

our program.

● We started the process with reducing the number of computations to half for each core for a 1x2

geometry and we observed double performance on sorken. Earlier performance was 5GF/s for the size

of 800, now we have the performance 11GF/s for the same size.

● Now, we started with distributing the data from rank 0 to other ranks (initial distribution). For this we

used one MPI function called MPI_Scatterv, which distributes different size subarrays to all ranks

defined. This routine is simple to implement, we created a vector data type for the subarrays with n/x

and n/y size. Then, based on the processor geometry we distributed subarray elements using

displacement and start index of MPI_Scatterv. We verified the same using print statements which

confirms the correct output to local receive buffers of each rank.

● Now, we moved to ghost cell implementations. For the ranks having matrix edges, we copied the

corresponding inner elements to the edges. Now, the edges have the correct data. Further, we used

MPI_Isend and MPI_Irecv to send and receive ghost cells across, top, bottom, left, and right. Since

Isend and Irecv are non-blocking calls, we need to use MPI_Waitall to wait for all ghost cells

communication across all ranks before starting 5-point stencil computation.

● After ghost cell communication, we verified the local buffer outputs using print statements, and we

observed the correct outputs. Then ,we wrote the code for 5-point stencil computation, on a matrix size

of n/x +2 , m/y +2. We observed better performance on sorken with 2-D processor geometry, but the

Linf and L2norm were not matching the reference outputs. This means there is something wrong with

the code.

● While debugging, we used print statements to figure out the issue, and since multiple cores are printing

at the same time. It was difficult to debug. We realized that there were some issues with the Scatterv

section and we decided to move to MPI_Isend and MPI_Irecv for initial distribution of data to all

ranks.

● Changing Scaterv to Isend and Irecv for distribution solved the problem. Now, the L2norm and Linf is

matching with the reference outputs and the code was working fine for different matrix sizes.

● Now, we decided to implement our code on expanse. We first started with a shared node on expanse

and we were getting a performance of 150GF/s for 16 cores, x 2 , and y 8, matrix size of 800 and

number of iterations 100000. We tried different geometry but the highest was 150GF/s. We then moved

to the compute node and we got the performance of 180GF/s for the same configuration.

● We decided to manually vectorize our code for performance. Adding AVX2 instructions would perform

4 double operations per cycle, which reduces the number of iterations, and helps in loop unrolling. We

observed a performance boost on sorken as well with vectorization. Finally, we got the performance of

240GF/s for the same configuration on sorken along with auto vectorization, and a better performance

for other sizes as well.

1.c) If you improved the performance of your code in a sequence of steps, document the

process. It may help clarify your explanation if you summarize the information in a list

or a table. Discuss how the development evolved into your final design.

● The initial condition distribution from worker 0 was initially using MPI_Send()/ MPI_Recv() APIs

which are blocking calls. So it was waiting to send a submatrix of E to another rank and then start

sending E_prev and subsequently R. So instead of using these blocking calls we used

MPI_Isend/Irecv() non blocking calls to avoid waiting after sending calls for each E_prev and R.

● This same technique improves the performance during ghost cell communication. Initially we started

with blocking MPI communication calls for each neighbor of a particular rank.

● We then replaced it with non-blocking MPI_Isend/Irecv() calls so that each rank could issue all the

commands to communicate with all its neighbors and then wait together for all send/receive commands

to complete. With this we observed better performance since all ranks were able to issue commands at

the same time instead of waiting for each send/receive call to complete.

● For further performance improvement we implemented manual vectorization of the ODE and PDE

computation using AVX2 intrinsics where we were able to process 4 doubles at once. We first verified

the increase in performance due to vectorization on sorken and then tested it on the shared and

compute nodes of Expanse.

● To finally reach 200GFs at 16 cores, every neighbor starts sending ghost cell data. To hide the

communication latency we compute on the inner matrix first that doesn’t require any ghost cell data to

compute. Once that is complete we wait for the ghost cells data and compute on the outer ring. SO we

are able to do meaningful work during the data transfer which speeds up our performance further.

Section (2) - Result

Q2.a) Compare the single processor performance of your parallel MPI code against the performance of the

original provided code. Measure and report MPI overhead from 1 to 16 cores).

Cores Geometry GF/s (without

Com)

GF/s(With Com) MPI Overhead

(%)

1 x=1,y=1 12.87 12.93 -0.4662004662

2 x=1,y=2 25.28 25.03 0.9889240506

3 x=1,y=3 38.67 38.46 0.543056633

4 x=1,y=4 52.35 51.04 2.502387775

5 x=1,y=5 65 62.8 3.384615385

6 x=1,y=6 77.5 74.5 3.870967742

7 x=1,y=7 89.6 86.52 3.4375

8 x=1,y=8 100.8 98.01 2.767857143

9 x=1,y=9 113 109.3 3.274336283

10 x=1,y=10 125 120.6 3.52

11 x=1,y=11 139.5 131.3 5.878136201

12 x=1,y=12 148.2 141.8 4.318488529

13 x=1,y=13 163.8 152.3 7.020757021

14 x=1,y=14 174.1 163.5 6.088454911

15 x=1,y=15 181.6 172.6 4.955947137

16 x=1,y=16 184 199 7.953976988

With the starter code, we observed a performance of 11.49GF/s for a matrix size of 800 and processor geometry

of 1x1. We ran the same configuration on our code, and we achieved a slightly better performance with

12.93GF/s. The number of iterations for the run is 2000. The MPI overhead gradually increases from 1 core to

16. This can be attributed to the fact that improvement in speedup with adding multiple cores is lesser than

increase in communication for initial distribution of data and ghost cell communication for smaller sizes of

matrix. The marginal reverse overhead in case of 1x1 might be because of the additional branch statements for

noComm case to ensure correct padding causing less auto vectorization.

Q2.b) Conduct a strong scaling study: observe the running time as you successively double the number of

cores, starting at p=1 core and ending at 16 cores on Expanse, while keeping N0 fixed.

Cores Geometry Run time

(seconds)

GFlops Run time with no

communication

(seconds)

GFlops(no

Comm)

1 x=1,y=1 2.78 12.93 2.78 12.87

2 x=1,y=2 1.42 25.03 1.41 25.28

4 x=1,y=4 0.702 51.04 0.68 52.35

8 x=1,y=8 0.365 98.01 0.355 100.8

16 x=1,y=16 0.194 184 0.181 199.9

As can be seen in the table above, the decrease in runtime almost saturates for the same matrix size and

number of iterations when increasing computing cores. The decrease in runtime is more at the start than at the

end. The overall benefit in runtime decrease is the difference between time saved from using multiple cores and

the time spent in ghost cell/init communication. The rank 0 distribution and ghost cell communication for

smaller matrix sizes starts to outweigh the speedup achieved using multiple cores with increasing cores. The

performance can be seen scaling fairly straight with a number of cores and performance is higher without

communication vs with communication.

Q2.c) Conduct a strong scaling study on 16 to 128 cores on Expanse with size N1. Measure and report MPI

communication overhead on Expanse. Supplement your discussion of scaling/overhead (i.e. what is the cost of

communication).

N1 performance vs cores N1 MPI overhead (%) vs cores

Cores Geometry Throughput

without

Comm(GFlops)

Throughput with

Comm(GFlops)

MPI Overhead

(%)

16 x=2, y = 8 212.4 205.3 3.342749529

32 x=4, y=8 422 399.3 5.379146919

64 x=4, y=16 800.4 746 6.796601699

128 x=8,y=16 1315 1141 13.23193916

As can be seen from the two grap1

Q2.d) Report the performance study from 128 to 384 cores with size N2. Measure the communication

overhead. Use the knowledge from the geometry experiments in Section (3) to perform these large core count

performance studies. Don't do an exhaustive search of geometries here as that will eat up your allocation.

Cores Geometry Throughput

without

Comm(GFlops)

Throughput with

Comm(GFlops)

MPI

Overhead(%)

128 x=8, y=16 212.7 202.1 4.983544899

192 x=12, y=16 420 399.4 4.904761905

256 x=16, y=16 1873 512.8 72.62146289

384 x=3, y=128 2723 1866 31.47264047

N2 performance vs cores N2 MPI Overhead (%) vs cores

As can be seen the performance increases with increasing cores. There is a sharp increase in performance at

256 cores for no communication case but not for the communication case. This also leads to a lot of MPI

overhead which can be seen in the other graph. One possible reason for this is the geometry size. With a

geometry size of 16x16 in case of 256, the communication required to pack and unpack ghost cells and left/right

cells for a square geometry is reasonably higher than the computation speedup that is achieved through higher

cores. The same is not true for 384 cores because the geometry favors more row major communication that

would be repetitive for top/down ghost cell communication.

Q2.e) Explain the communication overhead differences observed between <=128 cores and >128 cores.

As can be seen from the Tables above, the communication overhead for cores <=128 and N1 as 1800 is

increasing linearly with the number of cores, whereas for N2 as 8000, the overhead first increases from 192 to

256 and then decreases from 256 to 384. The benefit from adding the number of cores in case of 128 shows

that the added cores are able to utilize the computation more than the communication overhead. The

distribution of nodes for 384 cores is what governs the communication overhead.

Q2.f) Report cost of computation for each of 128, 256 and 384 cores for N2. What is the most optimal (from a

cost point of view) based on resources used and computation time? Explain.

Cores Geometry Execution

Time(s)

Computation Cost = #cores x

computation time (N x seconds)

128 x=8, y=16 70.95 9081.6

192 x=12, y=16 35.89 6891.5328

256 x=16, y=16 27.95 7155.2

384 x=3, y=128 7.60 2919.70944

We can observe from the table that as the number of cores are increasing, the computation cost, which is the

number of cores multiplied by the execution time, is also decreasing. For the matrix size of 8000 with number

of iterations also set to 8000, 384 cores computation time is just 7.6 seconds as compared to the computation

time of 27.95 seconds with 256 cores. With 384 cores, we achieved the optimal performance with geometry

x=3, and y=128. In the left/right direction, we have to do packing and then send the ghost cells, and then

unpack before the core can use the ghost cells. In the top/down direction, since the matrices are stored in

row-major order, we can send the whole row as ghost cells without the need of packing and unpacking. So, in

384 cores with minimum x, the cost of communication would be less as compared to other processor

geometries.

Also, as we increase the number of cores, the amount of computation that each core needs to perform per unit

time decreases. So, 384 cores can do more computation for the same matrix size as compared to other cores in

the same unit time. Hence, the computation cost with 384 cores is minimum and optimal for N2.

Q3.a) For p=128, report the top-performing geometries at N1. Report all top-performing geometries (within

10% of the top).

It is a completely non vectorized case.

N (Matrix Size) = 1800

Core (P = 128) Geometry Performance(GFlops)

128 x=2, y=64 671

128 x=16, y=8 678

128 x=4, y=32 701

128 x=8, y=16 729

Q3.b) Describe the patterns you see and hypothesize the reasons for those patterns. Why were the

above-mentioned geometries chosen as the highest performing?

The optimal geometries will manage the trade off between communication and computation well. The

computation time will decrease with an increasing number of processors but the communication time changes

with the number of cores. We observed that the optimal geometries for a higher number of processors was

moving more towards square shapes where it achieves a high ratio of computation to communication cost. We

don't see an exact square shape for 128 since it is not a perfect square. Square shape geometry is also optimal

for 256 cores.

In the stencil method, for one iteration elements from a given row and the row to its top and bottom are

accessed. So if these three rows were to be put into the L1 cache at the same time there would be lots of reuse

and enable faster computation. In Expanse, the L1 Cache Size is 32 KB which means it can hold 4096 Doubles.

So for every submatrix which is calculated by one processor the maximum X direction size would be (4096 / 3

rows) which is approximately 1365 without incurring misses. So geometries with a number of processors more

than (N / 1365) in X direction will have better computation costs. So we have observed that geometries (4,32)

and (8,16) had lesser cache miss rates than (2,64).

But we also need to consider the communication costs. If there are more processors in X direction then there

needs to be more packing and unpacking done since the data sent to left and right neighbors is in columnar

fashion from row-major order data which reduces performance. So the best performing geometries turned out

to be Px=4,Py=32 and Px=8,Py=16 with comparable performance for the number of processors P = 128.

Strong and Weak Scaling (4)

Q4.a) Run your best N1 geometry (or as close as you can get) at 128, 192, 256 and 384 cores.

Compare and graph your results from N1 and N2 for 128, 192, 256 and 384 cores.

Core Geometry N1 GF/s N2 GF/s

128 x=8, y=16 1141 202.1

192 x=12, y=16 1604 399.4

256 x=16, y=16 1863 512.8

384 x=3, y=128 2200 1866

As we can see from the plot, the performance increases for both N1 and N2 with an increase in the number of

cores. The curve for N1 is approximately linear , while the curve for N2 is linear till 256 cores, and then

increases sharply from 256 to 384 cores.

N2 size is 8000, while N1 size is 1800. So, if we run N2 on a processor geometry, there would be more number

of elements per core as compared to that of N1. Since, for N2 each core needs to perform more computations as

compared to that of N1, we see N1 has better performance for the same processor geometry as compared to N2.

Also, with increase in matrix size, the transfer of ghost cells among cores increases, which makes the

communication expensive. So, the performance slows down with more communication. Hence, in N2 we have

expensive communication and less computation per unit time as compared to N2. That’s why we see a huge

performance difference between N2 and N1 for the same processor geometry. Thus we see there is strong

scaling in performance for N1 from 128->384 but weak scaling for N2 from 128->384

Q4.b) Explain or hypothesize differences in the behavior of both strong scaling experiments for

N1 and N2? As needed, devise models, describe experiments and plot data to explain what

you've observed and justify your hypotheses.

We can observe from the previous table and plot that as we increase the number of cores, the performance

increases. With more cores, the amount of data a core needs to compute decreases. It means the computation

per unit time would increase with the number of cores, that’s why performance improves.

For N1=1800, as the number of cores increases, the performance increases in a linear fashion. The plot is

approximately linear. In expanse, we have 128 cores in a node. As we move from 128 to 192, we are using two

nodes. The nodes communicate over infiniband, which increases the communication overhead. So, moving

from one node to another increases communication overhead. But, also with more cores, we get more

computation per core. Hence, we observe an approximate linear performance with N1=1800.

For N2, the performance first improves in a linear fashion from 128 cores to 256 cores. But, with 384 cores we

see an approximate exponential increase. With 384 cores, we achieved the optimal performance with geometry

x=3, and y=128. As mentioned in the cost of computation question (2.f), when we have less number of cores in

x-direction, the cost of communication per node for 384 cores would be less as compared to other cores

configurations. This boosts the performance with 384 cores for N2. Also, the matrix size for N2 is huge, and the

number of elements per core may not fit in the processor’s cache. This will cause a lot of capacity misses and

slow down the performance, which we don’t observe in N1 plot. When we make the number of cores 384, the

number of elements per core decreases , and there would be less capacity misses with 384 cores as compared to

128, 192, or 256. This would also improve the performance. And finally, as the number of elements per core

decreases, the computation per unit time increases, which further improves the performance. That’s why we

observe exponential plots when moving from 256 to 384 cores for N2.

Extra Credit (5)

1. Plotting

To change the code which would support multi threaded plotting, we implemented gather logic that is

almost the reverse of our scatter logic. By sending back data to Rank 0 every plot_frequency number of

iterations, we are able to observe the plot below. We send the data back to rank 0 using normal

MPI_Send and MPI_Receive and unpack the received data at appropriate indexes within rank 0. In

our implementation rank0 did computation, distribution as well as gathering which is why it is not a

very fruitful problem to solve. If we had one additional rank that just collects data for plotting that

would be faster. This can be reasoned by the fact that every rank would send messages using

asynchronous calls and the gathering node would wait until it receives all the messages and then plots.

The problem is hence not worth solving if one core is doing computation as well as plotting.

2. Vectorization

We saw a huge performance improvement with auto vectorization as shown below. Without

vectorization statistics were obtained by passing “-fno-tree-vectorize” to the C++FLAGS argument in

Makefile. Manual vectorization statistics were obtained by adding “-msse -msse2 -mavx2 -DSSE_VEC

-fno-tree-vectorize” to Makefile and our manual intrinsics were ifdef’ed under “SSE_VEC”. Auto

vectorization was run with “-mavx -march=core-avx2”

objdump -d apf | grep xmm | wc -l (763 instances) (make mpi=1 vec=1 and auto vectorize on)

objdump -d apf | grep xmm| wc -l (290 instances) (make mpi=1 vec=1 and auto vectorize off)

objdump -d apf | grep xmm| wc -l (0 instances) (make mpi=1 and auto vectorize off)

The performance gain from auto vectorization is more than manual vectorization because our manual

vectorization was only done on the PDE and ODE solver computation portion, whereas the compiler has

optimized other loops within the code as well like ghost cell communication, Array packing routines

during MPI_Send etc. We also observed the effect of auto vs manual vs no vectorization by checking the

assembly code as shown above.

Cores Matrix

Size

Geometry Iteration Without

Vectorization

(GF)

Manual

Vectorizati

on (GF)

Auto

vectorization

(GF)

128 1800 x=8,y=16 100000 729 1420 1950

192 1800 x=12,y=16 100000 978 2000 2727

256 1800 x=16,y=16 100000 1175 2090 2607

384 1800 x=8,y=48 100000 1676 2980 3842

Possible Future Work (6)

There were a couple of things that we could have tried and will be part of future works

1. Possibly try out logarithmic scattering as mentioned in the discussion section and see its impact.

2. Play around more with compiler optimizations like prefetching hints.

3. Some more design space exploration of the optimal geometry sizes.

4. Some experiments with objdump to know what code gets generated. We were able to do preliminary

analysis to see the effect of auto vectorization vs manual vectorization.

5. Some analysis of cache usage using cachegrind was done but it could not help us a lot

6. We tried casually checking performance counters and wanted to use them in some analysis

7. We also wanted to see how MPI applications can be profiled using TAU but the report generated was

difficult to comprehend without some parser.

References (7)

1. https://www.open-mpi.org/doc/v3.1/man3

2. https://cseweb.ucsd.edu//~baden/Doc/docs/MPI_Guide.pdf

3. https://www.codingame.com/playgrounds/283/sse-avx-vectorization/autovectorization

4. https://www.rookiehpc.com/mpi/docs/mpi_isend.php

5. https://www.cs.uoregon.edu/research/tau/home.php

https://www.open-mpi.org/doc/v3.1/man3
https://cseweb.ucsd.edu//~baden/Doc/docs/MPI_Guide.pdf
https://www.codingame.com/playgrounds/283/sse-avx-vectorization/autovectorization
https://www.rookiehpc.com/mpi/docs/mpi_isend.php

